BACKGROUND Resistance to insect pests is an important self‐defense characteristic of pepper plants. However, the resistance of different pepper cultivars to Spodoptera litura larvae, one of the main insect pest species on pepper, is not well understood. RESULTS Among seven pepper cultivars evaluated, cayenne pepper ‘FXBX’ showed the highest repellency to third instar S. litura larvae, Chao tian chili pepper ‘BLTY2’ showed the lowest repellency. Plant volatiles (1‐hexene, hexanal, β‐ionone, (E,E)‐2,6‐nonadienal, and methyl salicylate) affected host selection by S. litura. Among these, 1‐hexene, hexanal, and β‐ionone at concentrations naturally‐released by pepper leaves were found to repel S. litura. Interestingly, S. litura larvae fed on the larva‐attracting pepper cultivar, (BLTY2) had an extended developmental period, which was about 13 days longer than larvae fed on FXBX. Besides, the survival rate of larvae fed on BLTY2 was 22.5 ± 0.0%, indicating that the leaves of BLTY2 can kill S. litura larvae. Correlation analysis showed that larval survival rate, emergence rate, female adult longevity, and pupal weight were positively correlated with the vitamin C, amino acids, protein, cellulose, and soluble sugar contents, but were negatively correlated with wax and flavonoids contents. CONCLUSION We identified two different modes of direct defense exhibited by pepper cultivars against S. litura. One involves the release of repellent volatiles to avoid been fed on (FXBX cultivar). The other involves the inhibition of the growth and development or the direct killing of S. litura larvae which feeds on it (BLTY2 cultivar). © 2022 Society of Chemical Industry.
Crystal toxins produced by different strains of entomopathogenic Bacillus thuringiensis (Bt) have been characterized and widely applied as commercial biological pesticides owing to their excellent insecticidal properties. This study aimed to identify novel bacterial strains effective in controlling Spodoptera exigua Hübner, Helicoverpa armigera Hübner, and Spodoptera litura Fabricius. Fifteen culturable bacterial strains were isolated from 60 dead larvae (H. armigera and S. exigua) collected in the field. The biochemical characteristics and 16S rRNA sequences of these strains indicated that one strain (B7) was Lysinibacillus sp., 12 strains (B1, B3, B4, B5, B6, B8, P2, P3, P4, P5, P6, and DW) were Bt kurstaki, and P2-2 and B2 were Bacillus velezensis subsp. Laboratory bioassays indicated that strains B3, P6, B6, and P4 showed high toxicity to second-instar larvae of S. exigua, with LC50 values of 5.11, 6.74, 205.82, and 595.93 µg/ml, respectively; while the strains P5, B5, B6, and P6, were the most efficient against second-instar larvae of H. armigera with LC50 values of 725.82, 11,022.72, 1,282.90, 2,005.28, respectively, and strains DW, P3, P2, and B4 had high insecticidal activity against second-instar larvae of S. litura with LC50 values of 576.69, 1,660.96, 6,309.42, and 5,486.10 µg/ml, respectively. In conclusion, several Bt kurstaki strains with good toxicity potential were isolated and identified in this study. These strains are expected to be useful for biointensive integrated pest management programs to reduce the use of synthetic insecticides.
Background Herbivore‐induced plant volatiles (HIPVs) are important self‐defense outputs of pepper plants to resist insect pests. Ascoviruses are pathogenic to the larvae of most lepidopteran vegetable pests. However, whether Heliothis virescens ascovirus 3h (HvAV‐3h)‐infected Spodoptera litura larvae can change pepper leaf HIPVs is not well understood. RESULTS Spodoptera litura larvae preferred S. litura‐infested leaves, and this preference was stronger with longer duration of S. litura infestation. In addition, S. litura larvae significantly chose pepper leaves damaged by HvAV‐3h‐infected S. litura over the healthy pepper leaves. Results also showed that S. litura larvae preferred leaves mechanically damaged and treated with oral secretions from HvAV‐3h infected‐S. litura larvae in a simulation test. We captured the volatiles emitted by leaves under six treatments. Results showed that the volatile profile changed with the different treatments. Testing of volatile blends, prepared to the proportion released showed that the blend from simulated HvAV‐3h‐infected S. litura larvae‐damaged plants was the most attractive to S. litura larvae. Further, we also found that some of the compounds significantly attracted S. litura larvae at specific concentrations. CONCLUSION HvAV‐3h‐infected S. litura can alter the release of HIPVs in pepper plants and thus become more attractive to S. litura larvae. We speculate that this may be due to alterations in the concentration of some compounds (such as geranylacetone and prohydrojasmon) affecting the behavior of S. litura larvae. © 2023 Society of Chemical Industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.