Methods for direct synthesis of N-(purin-8-yl)arylamines were investigated. N-(Purin-8-yl)arylamines are adducts from reaction of electrophilic metabolites of arylamines with DNA and have not been readily available by direct synthesis. Ability to generate significant quantities of this class of DNA adduct by synthetic means would facilitate basic research in molecular toxicology. Two routes with common thiourea intermediates were developed for this purpose. In the first route, 6-hydroxy-2,4,5-triaminopyrimidine was caused to react in aqueous medium with dithiocarbamate derivatives of o-, m-, or p-toluidine to form corresponding 2,4-diamino-5-(tolylthioureido)aminopyrimidin-6-ones in 60-70% yields. The thiourea intermediates were converted to carbodiimides and isolated in 20-25% yields after treatment with HgO in dimethylformamide. The carbodiimides were cyclized at 125 degrees C in dimethylformamide under N2 for 45 h to yield N-(guanin-8-yl)(o-, m-, or p-)toluidines in 65-75% yields. In the second route, direct reaction of p-tolyl isothiocyanate with 6-hydroxy-2,4,5-triaminopyrimidine or with 4,5,6-triaminopyrimidine in dimethylformamide and triethylamine led to the formation of 2,4-diamino-5-(p-tolylthioureido)aminopyrimidin-6-one and 4,6-diamino-5-(tolylthioureido)aminopyrimidine, respectively, in 77-79% yields. Methylation of the two thiourea derivatives by methyl iodide in dimethylformamide gave the corresponding methylisothiuronium derivatives, which were isolated in 71% and 84% yields (as HI salts), respectively. Conversion of the methylisothiuronium derivatives to N-(guanin-8-yl)-p-toluidine or N-(adenin-8-yl)-p-toluidine was accomplished by heating in dimethylformamide for 5-7 h at 80-90 degrees C, in 70% and 62% yields, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.