In this paper, a fractal model for capillary flow through a single tortuous capillary with roughened surfaces in fibrous porous media is derived. The determined imbibition height and imbibition mass of capillary rise are in satisfying agreement with the existing models reported in the literature. It is found that the imbibition height and imbibition mass of capillary decreases with increasing relative roughness. Besides, it is observed that the equilibrium time in a single tortuous capillary with roughened surfaces decreases with an increase in relative roughness. In addition, it is seen that the imbibition height and imbibition mass of capillary rise increases with imbibition time. With the proposed fractal model, the physical mechanisms of capillary flow through a single tortuous capillary with roughened surfaces in fibrous porous media are better elucidated. One advantage of our fractal analytical model is that it contains no empirical constant, which is usually required in previous models.
In this paper, fluid transport through fibrous porous media is studied by the fractal theory with a focus on the effect of surface roughness of capillaries. A fractal model for Kozeny–Carman (KC) constant and dimensionless permeability of fibrous porous media with roughened surfaces is derived. The determined KC constant and dimensionless permeability of fibrous porous media with roughened surfaces are in good agreement with available experimental data and existing models reported in the literature. It is found that the KC constant of fibrous porous media with roughened surfaces increases with the increase of relative roughness, porosity, area fractal dimension of pore and tortuosity fractal dimension, respectively. Besides, it is seen that the dimensionless permeability of fibrous porous media with roughened surfaces decreases with increasing relative roughness and tortuosity fractal dimension. However, it is observed that the dimensionless permeability of fibrous porous media with roughened surfaces increases with porosity. With the proposed fractal model, the physical mechanisms of fluids transport through fibrous porous media are better elucidated.
The biological actions of artemisinin (ART), an antimalarial drug derived from Artemisia annua, remain poorly understood and controversial. Besides potent antimalarial activity, some of artemisinin derivatives (together with artemisinin, hereafter referred to as ARTs), in particular dihydroartemisinin (DHA), are also associated with anticancer and other antiparasitic activities. In this study, we used baker’s yeast Saccharomyces cerevisiae as cellular and genetic model to investigate the molecular and cellular properties of ARTs. Two clearly separable pathways exist. While all ARTs exhibit potent anti-mitochondrial actions as shown before, DHA exerts an additional strong heme-dependent, likely mitochondria-independent inhibitory action. More importantly, heme antagonizes the mitochondria-dependent cellcidal action. Indeed, when heme synthesis was inhibited, the mitochondria-dependent cellcidal action of ARTs could be dramatically strengthened, and significant yeast growth inhibition at as low as 100 nM ART, an increase of about 25 folds in sensitivity, was observed. We conclude that ARTs are endowed with two major and distinct types of properties: a potent and specific mitochondria-dependent reaction and a more general and less specific heme-mediated reaction. The competitive nature of these two actions could be explained by their shared source of the consumable ARTs, so that inhibition of the heme-mediated degradation pathway would enable more ARTs to be available for the mitochondrial action. These properties of ARTs can be used to interpret the divergent antimalarial and anticancer actions of ARTs.
Summary Perforation pressure drop and its decrease caused by perforation erosion during a hydraulic-fracturing treatment are critical factors that need to be considered in treatment design, particularly when the limited-entry technique is implemented along multiple perforation clusters to ensure more-uniform fluid distribution. The simultaneous increases in the discharge coefficient Cd and perforation diameter D during perforation erosion require consideration of the temporal changes of these two variables to characterize the perforation-erosion behavior. In this paper, we present a perforation-erosion model dependent on abrasion mechanisms and the procedure to determine the specific erosion parameters that can be corroborated from laboratory data. Our modeling results demonstrate that it is inappropriate to assume an alternate increase in Cd and D, as considered in some conventional correlations. Once the erosion parameters are empirically inferred, we incorporate our model into a nonplanar hydraulic-fracturing simulator to determine appropriate perforation-number distributions at different clusters to ensure a successful limited-entry treatment that generates relatively even fluid distribution and uniform fractures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.