This work investigates the problem of estimating the frequency components of a mixture of s complex sinusoids from a random subset of n regularly spaced samples. Unlike previous work in compressed sensing, the frequencies are not assumed to lie on a grid, but can assume any values in the normalized frequency domain [0,1]. An atomic norm minimization approach is proposed to exactly recover the unobserved samples and identify the unknown frequencies, which is then reformulated as an exact semidefinite program. Even with this continuous dictionary, it is shown that O(s log s log n) random samples are sufficient to guarantee exact frequency localization with high probability, provided the frequencies are well separated. Extensive numerical experiments are performed to illustrate the effectiveness of the proposed method.
Aktmcz-We present a fast algorithm for two-dimensional median fiitering. It is based on storing and updating the gray level histogram of the picture elements in the window. The algorithm is much faster than conventional sorting methods. For a window size of m X n, the computer time required is O(n).
This paper establishes a nearly optimal algorithm for estimating the frequencies and amplitudes of a mixture of sinusoids from noisy equispaced samples. We derive our algorithm by viewing line spectral estimation as a sparse recovery problem with a continuous, infinite dictionary. We show how to compute the estimator via semidefinite programming and provide guarantees on its mean-square error rate. We derive a complementary minimax lower bound on this estimation rate, demonstrating that our approach nearly achieves the best possible estimation error. Furthermore, we establish bounds on how well our estimator localizes the frequencies in the signal, showing that the localization error tends to zero as the number of samples grows. We verify our theoretical results in an array of numerical experiments, demonstrating that the semidefinite programming approach outperforms two classical spectral estimation techniques.
Fourier ptychography is a new computational microscopy technique that provides gigapixel-scale intensity and phase images with both wide field-of-view and high resolution. By capturing a stack of low-resolution images under different illumination angles, an inverse algorithm can be used to computationally reconstruct the high-resolution complex field. Here, we compare and classify multiple proposed inverse algorithms in terms of experimental robustness. We find that the main sources of error are noise, aberrations and mis-calibration (i.e. model mis-match). Using simulations and experiments, we demonstrate that the choice of cost function plays a critical role, with amplitude-based cost functions performing better than intensity-based ones. The reason for this is that Fourier ptychography datasets consist of images from both brightfield and darkfield illumination, representing a large range of measured intensities. Both noise (e.g. Poisson noise) and model mis-match errors are shown to scale with intensity. Hence, algorithms that use an appropriate cost function will be more tolerant to both noise and model mis-match. Given these insights, we propose a global Newton's method algorithm which is robust and accurate. Finally, we discuss the impact of procedures for algorithmic correction of aberrations and mis-calibration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.