Traditional nanostructured design of cerium oxide catalysts typically focuses on their shape, size, and elemental composition. We report a different approach to enhance the catalytic activity of cerium oxide nanostructures through engineering high density of oxygen vacancy defects in these catalysts without dopants. The defect engineering was accomplished by a low pressure thermal activation process that exploits the nanosize effect of decreased oxygen storage capacity in nanostructured cerium oxides.
Experimental measurements of the conversion of m-cresol over Pt and Ru/SiO 2 catalysts show very different product distributions, even when the reaction is conducted at similarly low conversions and the same operating conditions (300 °C, 1 atm). That is, although ring hydrogenation to 3methylcyclohexanone is dominant over Pt, deoxygenation to toluene and C−C cleavage to C 1 −C 5 hydrocarbons prevail over Ru. For understanding the differences in reaction mechanisms responsible for this contrasting behavior, the conversion of mcresol over the Pt(111) and Ru(0001) surfaces has been analyzed using density functional theory (DFT) methods. The DFT results show that the direct dehydroxylation of m-cresol is unfavorable over the Pt(111) surface with an energy barrier of 242 kJ/mol. In turn, the calculations suggest that the reaction could proceed through a keto tautomer intermediate, which undergoes hydrogenation of the carbonyl group followed by dehydration to form toluene and water. At the same time, a low energy barrier for the ring hydrogenation path toward 3-methylcyclohexanone compared to the energy barrier for the deoxygenation path toward toluene over the Pt(111) surface is in agreement with the experimental observations, which show that 3methylcyclohexanone is the dominant product over Pt/SiO 2 at low conversions. By contrast, the direct dehydroxylation of mcresol becomes more favorable than the tautomerization route over the more oxophilic Ru(0001) surface. In this case, the deoxygenation path exhibits an energy barrier lower than that for the ring hydrogenation, which is also in agreement with experimental results that show higher selectivity to the deoxygenation product toluene. Finally, it is proposed that a partially unsaturated hydrocarbon surface species C 7 H 7 * is formed during the direct dehydroxylation of m-cresol over Ru(0001), becoming the crucial intermediate for the C−C bond breaking products C 1 −C 5 hydrocarbons, which are observed experimentally over the Ru/SiO 2 catalyst.
A combined experimental and theoretical comparative study of the hydrodeoxygenation (HDO) of anisole was conducted over Pt, Ru, and Fe metals. In the experimental part, an inert silica support was used to directly compare the catalytic activity and selectivity of the three metals at 375 ºC under H 2 flow at atmospheric pressure. In parallel, for density functional theory (DFT) calculations the close-packed Pt(111), Ru(0001), and Fe(110) surfaces were employed to compare the possible mechanisms on these metals. It was observed that over Pt/SiO 2 and Ru/SiO 2 catalysts, both phenol and benzene were the major products in a phenol/benzene ratio that decreased with the level of conversion. By contrast, over the Fe/SiO 2 catalyst, no phenol formation was detected, even at low conversions. The DFT results show that over all the three metal surfaces the dehydrogenation at the-CH 3 side group occurs before the CO bond breaking. This removal of H atoms from the-CH 3 group facilitates the activation of the aliphatic C alkyl-O bond. Therefore, it can be concluded that a common intermediate for the three metals is a surface phenoxy and the significant differences between the three metals is related to the reactivity of this surface phenoxy. That is, over Pt(111) and Ru(0001) the phenoxy intermediate is hydrogenated to phenol, which in turn, can undergo further HDO to form benzene. This result is in agreement with the experiments over Pt/SiO 2 and Ru/SiO 2 catalysts. Over these catalysts, both phenol and benzene are major products, with the selectivity to benzene increasing with conversion at the expense of phenol. In contrast, over the Fe(110) surface, the strong metal oxophilicity makes the direct cleavage of the CO bond in the surface phenoxy easier than
Patterned micro- and nanostructured surfaces have received increasing attention because of their ability to tune the hydrophobicity and hydrophilicity of their surfaces. However, the mechanical properties of these studied surfaces are not sufficiently robust for load-bearing applications. Here we report transparent nanocrystalline ZrO 2 films possessing combined properties of hardness and complete wetting behavior, which are expected to benefit tribology, wear reduction, and biomedical applications where ultrahydrophilic surfaces are required. This ultrahydrophilic behavior may be explained by the Wenzel model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.