This paper presents a reliable in-motion alignment algorithm for a low cost Strapdown Inertial Navigation System/Global Positioning System (SINS/GPS) combination under random misalignment angles, which transforms attitude alignment into an attitude estimation problem. Based on Rodrigues parameters, an alignment model with a linear state-space equation and a second order nonlinear measurement equation is established. Furthermore, by employing a Taylor expansion on the nonlinear measurement equation, we implement a second order Extended Kalman Filter (EKF2). The proposed method uses a single filter that can not only determine the initial attitude, but also estimate the sensor errors. In addition, a scheme is given for avoiding singularity, which makes the algorithm more widely suitable for random misalignment angles. Experimental ground tests are performed with a low-cost Micro-Electromechanical System (MEMS) SINS, which validates the efficacy of the proposed method. The performance compared to the traditional alignment algorithm is also given.
The absolute three-dimensional position of a longwall shearer is fundamental to longwall mining automation. The positioning of the longwall shearer is usually realized by the inertial navigation system (INS) and odometer (OD). However, the position accuracy of this positioning approach gradually decreases over time due to the gyro drift. To further increase the positioning accuracy of the shearer, this paper proposes a positioning approach based on the INS and light detection and ranging (LiDAR). A Kalman filter (KF) model based on the observation provided by detecting hydraulic supports which are part of the longwall face, using the LiDAR, is established. The selection scheme of the point features is studied through a set of simulations. In addition, compared with that of the approach based on the INS and OD, the shearer positioning accuracy obtained using the proposed approach is higher. When the shearer moves along a 350 m track for 6 cutting cycles and lasts about 7.1 h, both east and north position errors can be maintained within 0.2 m and the height error within 0.1 m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.