In order to improve the nutritional value and reduce starch the digestibility of black soybean cookies, superfine black soybean flour was modified by heat-moisture treatment (HMT). The physicochemical properties, structure analysis of the flour samples and corresponding dough, and nutritional, physical, and textural properties of the cookies were investigated. After HMT, the water and lactic acid retention capacity and the oil binding capacity of mix powder dramatically increased, being almost twice the value of the untreated sample. HMT increased gelatinization temperature by about 10 °C but decreased gelatinization enthalpy. HMT had no apparent effect on the morphology and size of granules, but some cracks and pores appeared on the HMT-mix powder granules and corresponding dough. Fourier transform infrared spectroscopy analysis showed that the ordered structure of dough was unaffected during HMT. After HMT, the thickness, density, and baking loss of the cookies increased, and the spread ratio decreased. HMT dramatically increased the chemical score of cookies from 12.35% in mix powder cookies to 19.64% in HMT-mix powder cookies. HMT decreased the rapidly digestible starch content, while the slowly digestible starch increased from 45.97% in mix powder cookies to 49.31% in HMT-mix powder cookies, and RS increased from 21.64% to 26.87%. Overall, HMT did not have a negative effect on the processing properties and microstructure and secondary structure of the dough, or the physical properties and quality of the cookies, but significantly improved the nutritional properties and decreased the starch digestibility of the cookies.
Starch is a readily available and abundant source of biological raw materials and is widely used in the food, medical, and textile industries. However, native starch with insufficient functionality limits its utilization in the above applications; therefore, it is modified through various physical, chemical, enzymatic, genetic and multiple modifications. This review summarized the relationship between structural changes and functional properties of starch subjected to different modified methods, including hydrothermal treatment, microwave, pre-gelatinization, ball milling, ultrasonication, radiation, high hydrostatic pressure, supercritical CO2, oxidation, etherification, esterification, acid hydrolysis, enzymatic modification, genetic modification, and their combined modifications. A better understanding of these features has the potential to lead to starch-based products with targeted structures and optimized properties for specific applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.