Intestinal epithelial barrier function is closely associated with the development of many intestinal diseases. Heat-killed Lacticaseibacillus paracasei (HK-LP) has been shown to improve intestinal health and enhance immunity. However, the function of HK-LP in the intestinal barrier is still unclear. This study characterized the inflammatory effects of seven HK-LP (1 μg/mL) on the intestinal barrier using lipopolysaccharide (LPS) (100 μg/mL)-induced Caco-2 cells. In this study, HK-LP 6105, 6115, and 6235 were selected, and their effects on the modulation of inflammatory factors and tight junction protein expression (claudin-1, zona occludens-1, and occludin) were compared. The effect of different cultivation times (18 and 48 h) was investigated in response to LPS-induced intestinal epithelial barrier dysfunction. Our results showed that HK-LP 6105, 6115, and 6235 improved LPS-induced intestinal barrier permeability reduction and transepithelial resistance. Furthermore, HK-LP 6105, 6115, and 6235 inhibited the pro-inflammatory factors (TNF-α, IL-1β, IL-6) and increased the expression of the anti-inflammatory factors (IL-4, IL-10, and TGF-β). HK-LP 6105, 6115, and 6235 ameliorated the inflammatory response. It inhibited the nuclear factor kappa B (NF-κB) signaling pathway-mediated myosin light chain (MLC)/MLC kinase signaling pathway by downregulating the Toll-like receptor 4 (TLR4)/NF-κB pathway. Thus, the results suggest that HK-LP 6150, 6115, and 6235 may improve intestinal health by regulating inflammation and TJ proteins. Postbiotics produced by these strains exhibit anti-inflammatory properties that can protect the intestinal barrier.
Using 2′-fucosyllactose (2′-FL) as the sole carbon source can be an efficient way to screen bifidobacteria with superior probiotic capabilities since 2′-FL is a key element in promoting the growth of intestinal bifidobacteria in newborns. This approach was used in this work to screen eight bifidobacteria strains, including one strain of Bifidobacterium longum subsp. infantis BI_Y46 and seven strains of Bifidobacterium bifidum (BB_Y10, BB_Y30, BB_Y39, BB_S40, BB_H4, BB_H5 and BB_H22). Studies on their probiotic properties showed that BI_Y46 had a unique morphology with pilus-like structure, a high resistance to bile salt stimulation and a potent inhibitory action on Escherichia coli ATCC 25922. Similarly, BB_H5 and BB_H22 produced more extracellular polysaccharides and had a higher protein content than other strains. In contrast, BB_Y22 displayed considerable auto-aggregation activity and a high resistance to bile salt stimulation. Interestingly, BB_Y39 with weak self-aggregation ability and acid resistance had very excellent bile salt tolerance, extracellular polysaccharides (EPS) production and bacteriostatic ability. In conclusion, 2′-FL was used as sole carbon source to identify eight bifidobacteria with excellent probiotic properties.
Allergic diseases, which are closely related to the composition and metabolism of maternal and infant flora, are prevalent in infants worldwide. The mother’s breast milk, intestinal, and vaginal flora directly or indirectly influence the development of the infant’s immune system from pregnancy to lactation, and the compositional and functional alterations of maternal flora are associated with allergic diseases in infants. Meanwhile, the infant’s own flora, represented by the intestinal flora, indicates and regulates the occurrence of allergic diseases and is altered with the intervention of allergic diseases. By searching and selecting relevant literature in PubMed from 2010 to 2023, the mechanisms of allergy development in infants and the links between maternal and infant flora and infant allergic diseases are reviewed, including the effects of flora composition and its consequences on infant metabolism. The critical role of maternal and infant flora in allergic diseases has provided a window for probiotics as a microbial therapy. Therefore, the uses and mechanisms by which probiotics, such as lactic acid bacteria, can help to improve the homeostasis of both the mother and the infant, and thereby treat allergies, are also described.
With the growing popularity of digital home, digital multimedia applications are in rapid development. Digital Media Adapter (DMA) in home network is very popular in recent years. However, some problems come out while applying the standard A/V application framework for DMA software, for examples, device's overloaded tasks, and low device's applicability of the DMA software, etc. Addressing these issues, it brings forward the UPnP & IGRS supported Lightweight DMA software framework. Moreover, it has adopted the new framework to a cell phone media player project. And it proves that the new framework can not only reduce the loads of DMA terminal device, but also conveniently realizes more high-end demands, so as to improve device's applicability of DMA application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.