A new fluorophore pyrido[1,2-a]benzimidazole based ratiometric fluorescent probe for the selective detection of sulfite ions in water was investigated.
The substitution reactions of H2GeLiF (G) with SiH3X (X = F, Cl, Br) were investigated using calculations performed at the QCISD/6-311++G (d, p)//B3LYP/6-311+G (d, p) level of theory. The results led to the following conclusions. (i) The substitutions are nucleophilic reactions. There are two substitution paths, I and II, which both lead to the germane H2GeFSiH3. The enantiomers of this germane are obtained via these two paths if an H in SiH3X is replaced with a different group or atom. (ii) Both substitution pathways show the same order of barrier heights (SiH3F > SiH3Cl > SiH3Br). The difference between the bond energies of Li-X and Si-X may explain the precedence among the substitution reactions of G with SiH3X. Path I has a lower activation barrier than path II, indicating that path I is more favorable. (iii) Comparison between the relevant insertion and substitution reactions shows that substitutions are more favorable and that the substitution product H2GeFSiH3 predominates over the insertion product. (iv) The substitution reactions of H2GeLiF with SiH3X are exothermic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.