An asymptotically flat hairy black hole (HBH) can exhibit distinct characteristics when compared to the Schwarzschild black hole, due to the evasion of no-hair theorem by minimally coupling the Einstein gravity with a scalar potential which possesses asymmetric vacua, i.e, a false vacuum (ϕ = 0) and a true vacuum (ϕ = ϕ1). In this paper, we investigate the geodesic motion of both massive test particles and photons in the vicinity of HBH with ϕ1 = 0.5 and ϕ1 = 1.0 by analyzing their effective potentials derived from the geodesic equation. By fixing ϕ1, the effective potential of a massive test particle increases monotonically when its angular momentum L is very small. When L increases to a critical value, the effective potential possesses an inflection point which is known as the innermost stable of circular orbit (ISCO), where the test particle can still remain stable in a circular orbit with a minimal radius without being absorbed by the HBH or fleeing to infinity. Beyond the critical value of L, the effective potential possesses a local minimum and a local maximum, indicating the existence of unstable and stable circular orbits, respectively. Moreover, the HBH possesses an unstable photon sphere but its location slightly deviates from the Schwarzschild black hole. The trajectories of null geodesics in the vicinity of HBH can also be classified into three types, which are the direct, lensing and photon sphere, based on the deflection angle of light, but the values of impact parameters can vary significantly than the Schwarzschild black hole.
Geochemical characterization studies and batch leaching experiments were conducted to explore the effects of a CO2 + O2 leaching system on uranium (U) recovery from ores obtained from an eastern limb of Zinda Pir Anticline ore deposit in Pakistan. The mineralogy of the ore was identified by Electron Probe Micro-analyzer (EPMA) and Scanning Electron Microscope-Energy Dispersive Spectrometer (SEM-EDS), showing that pitchblende is the main ore mineral. XRD was also used along with EPMA and SEM characterization data. Experimental results indicate that U mobility was readily facilitated in the CO2 + O2 system with Eh 284 mV and pH 6.24, and an 86% recovery rate of U3O8 was obtained. U speciation analysis implied the formation of UO2 (CO3)22− in the pregnant solution. The plausible mechanism may be attributed to the dissolved CO2 gas that forms carbonate/bicarbonate ion releasing oxidized U from the ore mineral. However, U recovery in the liquid phase was shown to decrease by higher U(VI) initial concentration, which may be due to the saturation of Fe adsorption capacity, as suggested by an increase in Fe concentration with increasing initial U(VI) concentration in the solid phase. However, further studies are needed to reveal the influencing mechanism of U(VI) initial concentration on U recovery in the solid phase. This study provides new insights on the feasibility and validity of the site application of U neutral in situ leaching.
Uranium (U) mining activities, which lead to contamination in soils and waters (i.e., leachate from U mill tailings), cause serious environmental problems. However, limited research works have been conducted on U pollution associated with a whole soil-water system. In this study, a total of 110 samples including 96 solid and 14 water samples were collected to investigate the characteristics of U distribution in a natural soil-water system near a U mining tailings pond. Results showed that U concentrations ranged from 0.09 ± 0.02 mg/kg to 2.56 × 104± 23 mg/kg in solid samples, and varied greatly in different locations. For tailings sand samples, the highest U concentration (2.56× 104 ± 23 mg/kg) occurred at the depth of 80 cm underground, whereas, for paddy soil samples, the highest U concentration (5.22 ± 0.04 mg/kg) was found at surface layers. Geo-accumulation index and potential ecological hazard index were calculated to assess the hazard of U in the soils. The calculation results showed that half of the soil sampling sites were moderately polluted. For groundwater samples, U concentrations ranged from 0.55 ± 0.04 mg/L to 3.36 ± 0.02 mg/L with a mean value of 2.36 ± 0.36 mg/L, which was significantly lower than that of percolating waters (ranging from 4.56 ± 0.02 mg/L to 12.05 ± 0.04 mg/L, mean 7.91 ± 0.98 mg/L). The results of this study suggest that the distribution of U concentrations in a soil-water system was closely associated with hydrological cycles and U concentrations decreased with circulation path.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.