The nucleobase/ascorbate transporter (NAT) proteins, also known as nucleobase/cation symporter 2 (NCS2) proteins, are responsible for the uptake of nucleobases in all kingdoms of life and for the transport of vitamin C in mammals. Despite functional characterization of the NAT family members in bacteria, fungi and mammals, detailed structural information remains unavailable. Here we report the crystal structure of a representative NAT protein, the Escherichia coli uracil/H(+) symporter UraA, in complex with uracil at a resolution of 2.8 Å. UraA has a novel structural fold, with 14 transmembrane segments (TMs) divided into two inverted repeats. A pair of antiparallel β-strands is located between TM3 and TM10 and has an important role in structural organization and substrate recognition. The structure is spatially arranged into a core domain and a gate domain. Uracil, located at the interface between the two domains, is coordinated mainly by residues from the core domain. Structural analysis suggests that alternating access of the substrate may be achieved through conformational changes of the gate domain.
High–energy density lithium (Li) metal batteries (LMBs) are promising for energy storage applications but suffer from uncontrollable electrolyte degradation and the consequently formed unstable solid-electrolyte interphase (SEI). In this study, we designed self-assembled monolayers (SAMs) with high-density and long-range–ordered polar carboxyl groups linked to an aluminum oxide–coated separator to provide strong dipole moments, thus offering excess electrons to accelerate the degradation dynamics of carbon-fluorine bond cleavage in Li bis(trifluoromethanesulfonyl)imide. Hence, an SEI with enriched lithium fluoride (LiF) nanocrystals is generated, facilitating rapid Li + transfer and suppressing dendritic Li growth. In particular, the SAMs endow the full cells with substantially enhanced cyclability under high cathode loading, limited Li excess, and lean electrolyte conditions. As such, our work extends the long-established SAMs technology into a platform to control electrolyte degradation and SEI formation toward LMBs with ultralong life spans.
The Escherichia coli uracil:proton symporter UraA is a prototypical member of the nucleobase/ascorbate transporter (NAT) or nucleobase/cation symporter 2 (NCS2) family, which corresponds to the human solute carrier family SLC23. UraA consists of 14 transmembrane segments (TMs) that are organized into two distinct domains, the core domain and the gate domain, a structural fold that is also shared by the SLC4 and SLC26 transporters. Here we present the crystal structure of UraA bound to uracil in an occluded state at 2.5 Å resolution. Structural comparison with the previously reported inward-open UraA reveals pronounced relative motions between the core domain and the gate domain as well as intra-domain rearrangement of the gate domain. The occluded UraA forms a dimer in the structure wherein the gate domains are sandwiched by two core domains. In vitro and in vivo biochemical characterizations show that UraA is at equilibrium between dimer and monomer in all tested detergent micelles, while dimer formation is necessary for the transport activity. Structural comparison between the dimeric UraA and the recently reported inward-facing dimeric UapA provides important insight into the transport mechanism of SLC23 transporters.
Splicing of precursor messenger RNA (pre-mRNA) in eukaryotic cells is carried out by the spliceosome, which consists of five small nuclear ribonucleoproteins (snRNPs) and a number of accessory factors and enzymes. Each snRNP contains a ring-shaped subcomplex of seven proteins and a specific RNA molecule. The U6 snRNP contains a unique heptameric Lsm protein complex, which specifically recognizes the U6 small nuclear RNA at its 3' end. Here we report the crystal structures of the heptameric Lsm complex, both by itself and in complex with a 3' fragment of U6 snRNA, at 2.8 Å resolution. Each of the seven Lsm proteins interacts with two neighbouring Lsm components to form a doughnut-shaped assembly, with the order Lsm3-2-8-4-7-5-6. The four uridine nucleotides at the 3' end of U6 snRNA are modularly recognized by Lsm3, Lsm2, Lsm8 and Lsm4, with the uracil base specificity conferred by a highly conserved asparagine residue. The uracil base at the extreme 3' end is sandwiched by His 36 and Arg 69 from Lsm3, through π-π and cation-π interactions, respectively. The distinctive end-recognition of U6 snRNA by the Lsm complex contrasts with RNA binding by the Sm complex in the other snRNPs. The structural features and associated biochemical analyses deepen mechanistic understanding of the U6 snRNP function in pre-mRNA splicing.
Sodium metal anodes are ideal candidates for advanced high energy density Na metal batteries. Nevertheless, the unstable solid electrolyte interphase (SEI), the uncontrollable dendrite growth, and low Coulombic efficiency during cycling have prevented their applications. Herein, a high‐performance Na anode is achieved by introduction of an ex situ artificial Na3P layer on the surface via a simple red phosphorus pretreatment method. The artificial SEI layer possesses high ionic conductivity and high Young's modulus, which regulates uniform deposition of ions and prevents the dendrite growth. Benefiting from these merits, the Na||Na cells with the protected layers demonstrate excellent electrochemical performance (780 h at 1.0 mA cm–2, 1.0 mAh cm–2). When assembled into a full battery with a Na3V2(PO4)3 cathode, the Na metal battery exhibits a long lifespan of 400 cycles at 15 C and a high rate capacity of ≈53.2 mAh g–1 at 30 C. In addition the red P pretreatment method can be applied to potassium metal anodes. Outstanding performance is also achieved in K||K cells with the formation of a KxPy protecting layer (550 h at 0.5 mA cm–2, 0.5 mAh cm–2). The artificial P‐derived protection approach can also be extended to solid‐state alkali metal batteries with high power density and energy density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.