SummaryThree p-amidinophenyl esters have been synthesized and characterized as irreversible inhibitors of the vitamin-K dependent proteinases; factors IXa, Xa and thrombin (Turner et al. [4])+. In the present report we describe the in vitro and in vivo effects of these agents on standard coagulation tests in vitro and in blood from animals treated with the compounds. At a concentration of 500 μM, the three esters increased the activated partial thromboplastin time (PTT) of pooled human plasma 3 to 5-fold. The prothrombin time increased 1.4 to 3.7-fold under similar conditions. The p-amidinophenyl ester of cinnamic acid (CINN) showed the most pronounced effect on both assays. This ester also is the best inhibitor of human factors IXa and Xa, while the p-amidinophenyl ester of benzoic acid (BENZ) is a slightly better α-thrombin inhibitor (4). The effect of these esters on the thrombin clotting time correlated with in vitro kinetic measurements of α-thrombin inhibition rates. Both BENZ and CINN increased the assay endpoint more than 6-fold. The three esters also were studied using mouse plasma. A comparable effect on the PTT was noted. Intravenous administration of 300 αl of 1 mM CINN as a single bolus in mice caused a 2.3-fold increase in the PTT which remained 1.2-fold normal 2 h later. The BENZ and a-methyl-cinnamic acid (MECINN) esters were somewhat less effective as predicted from their in vitro effect on the PTT. This investigation and previous studies indicate that these compounds demonstrate low toxicity at therapeutic levels. It is concluded that the p-amidinophenyl esters may be useful in antithrombotic therapy.
Streptokinase-plasmin complex (SkPl) was prepared with human plasminogen. Regulation of SkPl and plasmin by the plasma proteinase inhibitors, alpha 2-antiplasmin (alpha 2AP) and alpha 2-macroglobulin (alpha 2M), was studied as a function of temperature in plasminogen- depleted human plasma, mouse plasma, and solutions of purified proteins. The reaction of plasmin with proteinase inhibitors in human plasma was complete. alpha 2AP was the predominant inhibitor. The fraction of alpha 2M-plasmin recovered was not affected significantly by incubation temperature. In contrast, the reaction of SkPl with human proteinase inhibitors was markedly temperature dependent. The apparent second-order rate constant for the reaction of SkPl with purified alpha 2AP at 37 degrees C (1.5 x 10(2) mol/L-1 s-1) was greater than 150-fold higher than the constant derived at 4 degrees C. In human plasma and in solutions containing mixtures of purified human proteins, alpha 2AP was the principal inhibitor of SkPl. Elevating the temperature enhanced the reaction of SkPl with alpha 2AP and alpha 2M comparably. Equivalent results were obtained when incubations were performed in platelet-rich plasma (PRP) or whole blood. In murine plasma, SkPl reacted readily with the proteinase inhibitors. The principal inhibitor of SkPl was alpha 2M. Maximum reaction between SkPl and murine alpha 2M was observed at 37 degrees C; however, significant reaction also occurred at 4 degrees C. alpha 2 AP was the predominant inhibitor of plasmin in mouse plasma. Reaction of alpha 2AP with SkPl in murine plasma was significant only after the alpha 2M was inactivated with methylamine. These results were not affected by platelets or whole blood cells. We conclude that the thrombolytic efficacy of streptokinase reflects not only the nature of the plasminogen activator complex but also the function of the proteinase inhibitors.
Human 125I-plasminogen bound readily to rat hepatocytes in primary culture at 4 degrees C and at 37 degrees C. Binding was inhibited by lysine and reversed by lysine, epsilon-aminocaproic acid, or nonradiolabeled plasminogen. The Kd for binding of 125I-plasminogen to hepatocytes was 0.59 +/- 0.16 mumol/L, as determined from the saturation isotherm by nonlinear regression (r2 = 0.99) and the Scatchard transformation by linear regression (r2 = 0.93). The number of sites per cell was 14.1 +/- 1.1 x 10(6). Fibrinogen synthesis and secretion by hepatocytes was insufficient to account for the major fraction of plasminogen binding, as determined by enzyme-linked immunosorbent assay (ELISA). Polyacrylamide gel electrophoresis and trichloroacetic acid precipitation studies demonstrated that plasminogen is neither activated nor degraded when bound to hepatocytes at 37 degrees C. Thin slices of whole rat liver (500 microns), isolated and prepared totally at 4 degrees C, bound 125I-plasminogen. Binding was inhibited by lysine. 125I-albumin binding to liver slices was minimal and not inhibited by lysine. Activation of plasminogen by tissue plasminogen activator (t-PA) was enhanced by hepatocytes in primary culture. When lysine was included in the media, the enhanced rate of activation was no longer observed. After activation with t-PA, much of the plasmin remained associated with hepatocyte surfaces and was partially protected from inhibition by alpha 2-antiplasmin. These studies suggest that hepatocyte plasminogen binding sites may provide important surface anticoagulant activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.