Easy JavaScript Simulations (EJsS) is an open-source tool that allows teachers with limited programming experience to straightforwardly bundle an interactive computer science or engineer simulation in an HTML+ JavaScript webpage. Its prominent place in Physics (where it has won several prizes) should not hinder its application in other fields (such as building the front-end of remote laboratories or learning analytics) after having adapted part of the functionality of EJsS to them. To facilitate the future inclusion of new functionalities in EJsS, this paper presents a new version of this tool that allows the enhancement of EJsS, letting it incorporate new tools and change its graphical user interface, by means of extension plugins (special software libraries). To illustrate the benefits of this distributable self-contained non-intrusive strategy, the paper (a) discusses the new methodological possibilities that the Plugins bring to EJsS developers and users, and (b) presents three plugins: one to support the plugin management and the others to easily set up a streamlined remote laboratory. Moreover, the paper also presents the main characteristics of that remote lab to allow readers take advantage of EJsS and the three plugins to set up new online experiments for their students quickly.
Harmful algal and cyanobacterial blooms (HABs), occurring in inland and maritime waters, pose threats to natural environments by producing toxins that affect human and animal health. In the past, HABs have been assessed mainly by the manual collection and subsequent analysis of water samples and occasionally by automatic instruments that acquire information from fixed locations. These procedures do not provide data with the desirable spatial and temporal resolution to anticipate the formation of HABs. Hence, new tools and technologies are needed to efficiently detect, characterize and respond to HABs that threaten water quality. It is essential nowadays when the world’s water supply is under tremendous pressure because of climate change, overexploitation, and pollution. This paper introduces Discrete Event System Specification-BLOOM, a novel framework for real-time monitoring and management of HABs. Its purpose is to support high-performance hazard detection with model-based system engineering and cyber-physical systems infrastructure for dynamic environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.