Thermal diffusion and thermoelastic bending are two consequences of heating generated on the sample surface. Both are employed in Open Photoacoustic Cell (OPC) technique to measure the thermal diffusivity of the sample. In this work, we explore the potential use of the OPC technique to study the effectiveness of thermoelastic bending process and thermal diffusion process on photoacoustic signal (S) generation in solids. More specifically, it is observed that if the thermoelastic bending process becomes more effective while the sample thickness is decreased, this information can be used to obtain a method to self-check the value of the thermal diffusivity parameter measured. The method is based on the measurement of the thermoelastic bending parameter as a function of the sample thickness (ls). The expected dependence of the thermoelastic bending parameter (C2) with the sample thickness, according to the theoretical model, is C2 ∝ ls−3. Our results for aluminum metallic samples give a C2 ∝ ls−2.8 dependence. Also, a thermal diffusivity value of αexp = (8.4 ± 0.3) × 10−5 m2/s was measured for metallic aluminum. This value is in good agreement when compared with the theoretical value αAl = 8.6 × 10−5 m2/s.
This work reports for the first time on the use of the open photoacoustic cell technique operating at very low frequencies and at room temperature to experimentally determine the thermal diffusivity parameter of commercial AISI304 stainless steel and AISI304 stainless steel nitrided samples. Complementary measurements of X-ray diffraction and scanning electron microscopy were also performed. The results show that in standard AISI 304 stainless steel samples the thermal diffusivity is (4.0 ± 0.3) × 10−6 m2/s. After the nitriding process, the thermal diffusivity increases to the value (7.1 ± 0.5) × 10−6 m2/s. The results are being associated to the diffusion process of nitrogen into the surface of the sample. Carrying out subsequent thermal treatment at 500 °C, the thermal diffusivity increases up to (12.0 ± 2) × 10−6 m2/s. Now the observed growing in the thermal diffusivity must be related to the change in the phases contained in the nitrided layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.