The current COVID-19 pandemic has impacted cities particularly hard. Here, we provide an in-depth characterization of disease incidence and mortality, and their dependence on demographic and socioeconomic strata in Santiago, a highly segregated city and the capital of Chile. Our analyses show a strong association between socioeconomic status and both COVID-19 outcomes and public health capacity. People living in municipalities with low socioeconomic status did not reduce their mobility during lockdowns as much as those in more affluent municipalities. Testing volumes may have been insufficient early in the pandemic in those places, and both test positivity rates and testing delays were much higher. We find a strong association between socioeconomic status and mortality, measured either by COVID-19 attributed deaths or excess deaths. Finally, we show that infection fatality rates in young people are higher in low-income municipalities. Together, these results highlight the critical consequences of socioeconomic inequalities on health outcomes.
The current coronavirus disease 2019 (COVID-19) pandemic has impacted dense urban populations particularly hard. Here, we provide an in-depth characterization of disease incidence and mortality patterns, and their dependence on demographic and socioeconomic strata in Santiago, a highly segregated city and the capital of Chile. We find that among all age groups, there is a strong association between socioeconomic status and both mortality –measured either by direct COVID-19 attributed deaths or excess deaths– and public health capacity. Specifically, we show that behavioral factors like human mobility, as well as health system factors such as testing volumes, testing delays, and test positivity rates are associated with disease outcomes. These robust patterns suggest multiple possibly interacting pathways that can explain the observed disease burden and mortality differentials: (i) in lower socioeconomic status municipalities, human mobility was not reduced as much as in more affluent municipalities; (ii) testing volumes in these locations were insufficient early in the pandemic and public health interventions were applied too late to be effective; (iii) test positivity and testing delays were much higher in less affluent municipalities, indicating an impaired capacity of the health-care system to contain the spread of the epidemic; and (iv) infection fatality rates appear much higher in the lower end of the socioeconomic spectrum. Together, these findings highlight the exacerbated consequences of health-care inequalities in a large city of the developing world, and provide practical methodological approaches useful for characterizing COVID-19 burden and mortality in other segregated urban centers.
Retinal prostheses aim to restore visual perception in patients blinded by photoreceptor degeneration, by stimulating surviving retinal ganglion cells (RGCs), causing them to send artificial visual signals to the brain. Present-day devices produce limited vision, in part due to indiscriminate and simultaneous activation of many RGCs of different types that normally signal asynchronously. To improve artificial vision, we propose a closed-loop, cellular-resolution device that automatically identifies the types and properties of nearby RGCs, calibrates its stimulation to produce a dictionary of achievable RGC activity patterns, and then uses this dictionary to optimize stimulation patterns based on the incoming visual image. To test this concept, we use a high-density multi-electrode array as a lab prototype, and deliver a rapid sequence of electrical stimuli from the dictionary, progressively assembling a visual image within the visual integration time of the brain. Greedily minimizing the error between the visual stimulus and a linear reconstruction (as a surrogate for perception) yields a realtime algorithm with an efficiency of 96% relative to optimum. This framework also provides insights for developing efficient hardware. For example, using only the most effective 50% of electrodes minimally affects performance, suggesting that an adaptive device configured using measured properties of the patient's retina may permit efficiency with accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.