␣-Actinin is tyrosine-phosphorylated in activated human platelets (Izaguirre, G., Aguirre, L., Ji, P., Aneskievich, B., and Haimovich, B. (1999) J. Biol. Chem. 274, 37012-37020). Analysis of platelet RNA by reverse transcription-polymerase chain reaction revealed that ␣-actinin expressed in platelets is identical to the cytoskeletal/non-muscle isoform. A construct of this isoform containing a His 6 tag at the amino terminus was generated. Robust tyrosine phosphorylation of the recombinant protein was detected in cells treated with the tyrosine phosphatase inhibitor vanadate. The tyrosine phosphorylation site was localized to the amino-terminal domain by proteolytic digestion. A recombinant ␣-actinin protein containing a Tyr 3 Phe mutation at position 12 (Y12F) was no longer phosphorylated when expressed in vanadate-treated cells, indicating that tyrosine 12 is the site of phosphorylation. The wild type recombinant protein was not phosphorylated in cells lacking the focal adhesion kinase (FAK). Re-expression of FAK in these cells restored ␣-actinin phosphorylation. Purified wild type ␣-actinin, but not the Y12F mutant, was phosphorylated in vitro by wild type as well as a Phe-397 mutant of FAK. In contrast, no phosphorylation was detected in the presence of a kinase-dead FAK. Tyrosine phosphorylation reduced the amount of ␣-actinin that cosedimented with actin filaments. These results establish that ␣-actinin is a direct substrate for FAK and suggest that ␣-actinin mediates FAK-dependent signals that could impact the physical properties of the cytoskeleton.
Serpin family protein proteinase inhibitors regulate the activity of serine and cysteine proteinases by a novel conformational trapping mechanism that may itself be regulated by cofactors to provide a finely-tuned time and location-dependent control of proteinase activity. The serpin, antithrombin, together with its cofactors, heparin and heparan sulfate, perform a critical anticoagulant function by preventing the activation of blood clotting proteinases except when needed at the site of a vascular injury. Here, we review the detailed molecular understanding of this regulatory mechanism that has emerged from numerous X-ray crystal structures of antithrombin and its complexes with heparin and target proteinases together with mutagenesis and functional studies of heparin-antithrombinproteinase interactions in solution. Like other serpins, antithrombin achieves specificity for its target blood clotting proteinases by presenting recognition determinants in an exposed reactive center loop as well as in exosites outside the loop. Antithrombin reactivity is repressed in the absence of its activator because of unfavorable interactions that diminish the favorable RCL and exosite interactions with proteinases. Binding of a specific heparin or heparan sulfate pentasaccharide to antithrombin induces allosteric activating changes that mitigate the unfavorable interactions and promote template bridging of the serpin and proteinase. Antithrombin has thus evolved a sophisticated means of regulating the activity of blood clotting proteinases in a time and locationdependent manner that exploits the multiple conformational states of the serpin and their differential stabilization by glycosaminoglycan cofactors.
A wide variety of viruses exploit furin and other proprotein convertases (PCs) of the constitutive protein secretion pathway in order to regulate their cell entry mechanism and infectivity. Surface proteins of enveloped, as well as non-enveloped, viruses become processed by these proteases intracellularly during morphogenesis or extracellularly after egress and during entry in order to produce mature virions activated for infection. Although viruses also take advantage of other proteases, it is when some viruses become reactive with PCs that they may develop high pathogenicity. Besides reacting with furin, some viruses may also react with the PCs of the other specificity group constituted by PC4/PC5/PACE4/PC7. The targeting of PCs for inhibition may result in a useful strategy to treat infections with some highly pathogenic viruses. A wide variety of PC inhibitors have been developed and tested for their antiviral activity in cell-based assays.
Vinculin is a conserved actin binding protein localized in focal adhesions and cell-cell junctions. Here, we report that vinculin is tyrosine phosphorylated in platelets spread on fibrinogen and that the phosphorylation is Src kinases dependent. The phosphorylation of vinculin on tyrosine was reconstituted in vanadate treated COS-7 cells coexpressing c-Src. The tyrosine phosphorylation sites in vinculin were mapped to residues 100 and 1065. A phosphorylation-specific antibody directed against tyrosine residue 1065 reacted with phosphorylated platelet vinculin but failed to react with vinculin from unstimulated platelet lysates. Tyrosine residue 1065 located in the vinculin tail domain was phosphorylated by c-Src in vitro. When phosphorylated, the vinculin tail exhibited significantly less binding to the vinculin head domain than the unphosphorylated tail. In contrast, the phosphorylation did not affect the binding of vinculin to actin in vitro. A double vinculin mutant protein Y100F/Y1065F localized to focal adhesion plaques. Wild-type vinculin and single tyrosine phosphorylation mutant proteins Y100F and Y1065F were significantly more effective at rescuing the spreading defect of vinculin null cells than the double mutant Y100F/Y1065F. The phosphorylation of vinculin by Src kinases may be one mechanism by which these kinases regulate actin filament assembly and cell spreading.
The heparin-binding site of antithrombin is shown here to play a crucial role in mediating the antiangiogenic activity of conformationally altered cleaved and latent forms of the serpin. Blocking the heparin-binding site of cleaved or latent antithrombin by complexation with a highaffinity heparin pentasaccharide abolished the serpin's ability to inhibit proliferation, migration, capillary-like tube formation, basic fibroblast growth factor (bFGF) signaling, and perlecan gene expression in bFGF-stimulated human umbilical vein endothelial cells. Mutation of key heparin binding residues, when combined with modifications of Asn-linked carbohydrate chains near the heparinbinding site, also could abrogate the antiproliferative activity of the cleaved serpin. Surprisingly, mutation of Lys114, which blocks anticoagulant activation of antithrombin by heparin, caused the native protein to acquire antiproliferative activity without the need for conformational change. Together, these results indicate that the heparin-binding site of antithrombin is of crucial importance for mediating the serpin's antiangiogenic activity and that heparin activation of native antithrombin constitutes an antiangiogenic switch that is responsible for turning off the antiangiogenic activity of the native serpin. IntroductionAntithrombin is an abundantly expressed, key plasma protein regulator of blood coagulation in vertebrates. 1 Inherited or acquired deficiencies of the protein in humans are associated with an increased risk of developing thrombotic disease, 2 and complete deficiency in mice results in embryonic lethality due to a consumptive coagulopathy. 3 Antithrombin regulates blood coagulation by directly inhibiting the serine proteases of the clotting cascade, the most important targets being thrombin, factor Xa, and factor IXa. 1,4 The protein is a member of the serpin superfamily of protein protease inhibitors and shares a common tertiary structure with the family. 5 It is unusual among serpins in requiring activation by the sulfated glycosaminoglycans, heparin or heparan sulfate, to inhibit its target proteases at a physiologically significant rate. A sequencespecific pentasaccharide present in only a fraction of heparin molecules mediates high-affinity binding and anticoagulant activation of antithrombin by the polysaccharide. 1,[6][7][8] In addition to its well-established anticoagulant function, antithrombin has more recently been shown to have anti-inflammatory, 9 antiviral, 10 and antiangiogenic functions. 11,12 The antiangiogenic activity has been demonstrated from the ability to inhibit basic fibroblast growth factor (bFGF)-or vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation, blood vessel growth in the chick embryo, and tumor growth in mice. The antitumor activity equals or exceeds that of other well-established antiangiogenic agents. 13 Of importance, antiangiogenic activity is not present in native antithrombin but is expressed only after the protein undergoes conformational alterations induc...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.