Cellulose nanofibrils can be obtained from trees and have considerable potential as a building block for biobased materials. In order to achieve good properties of these materials, the nanostructure must be controlled. Here we present a process combining hydrodynamic alignment with a dispersion–gel transition that produces homogeneous and smooth filaments from a low-concentration dispersion of cellulose nanofibrils in water. The preferential fibril orientation along the filament direction can be controlled by the process parameters. The specific ultimate strength is considerably higher than previously reported filaments made of cellulose nanofibrils. The strength is even in line with the strongest cellulose pulp fibres extracted from wood with the same degree of fibril alignment. Successful nanoscale alignment before gelation demands a proper separation of the timescales involved. Somewhat surprisingly, the device must not be too small if this is to be achieved.
The characterization of the Advanced LIGO detectors in the second and third observing runs has increased the sensitivity of the instruments, allowing for a higher number of detectable gravitational-wave signals, and provided confirmation of all observed gravitational-wave events. In this work, we present the methods used to characterize the LIGO detectors and curate the publicly available datasets, including the LIGO strain data and data quality products. We describe the essential role of these datasets in LIGO–Virgo Collaboration analyses of gravitational-waves from both transient and persistent sources and include details on the provenance of these datasets in order to support analyses of LIGO data by the broader community. Finally, we explain anticipated changes in the role of detector characterization and current efforts to prepare for the high rate of gravitational-wave alerts and events in future observing runs.
In situ measurement of a polymer solar cell using micro grazing incidence small angle X-ray scattering (μGISAXS) and current-voltage tracking is demonstrated. While measuring electric characteristics under illumination, morphological changes are probed by μGISAXS. The X-ray beam (green) impinges on the photo active layer with a shallow angle and scatters on a 2d detector. Degradation is explained by the ongoing nanomorphological changes observed.
The reproducible low-cost fabrication of functional metal-polymer nanocomposites with tailored optoelectronic properties for advanced applications remains a major challenge in applied nanotechnology. To obtain full control over the nanostructural evolution at the metal-polymer interface and its impact on optoelectronic properties, we employed combined in situ time-resolved microfocus grazing incidence small angle X-ray scattering (μGISAXS) with in situ UV/vis specular reflectance spectroscopy (SRS) during sputter deposition of gold on thin polystyrene films. On the basis of the temporal evolution of the key scattering features in the real-time μGISAXS experiment, we directly observed four different growth regimes: nucleation, isolated island growth, growth of larger aggregates via partial coalescence, and continuous layer growth. Moreover, their individual thresholds were identified with subnanometer resolution and correlated to the changes in optical properties. During sputter deposition, a change in optical reflectivity of the pristine gray-blue PS film was observed ranging from dark blue color due to the presence of isolated nanoclusters at the interface to bright red color from larger Au aggregates. We used simplified geometrical assumptions to model the evolution of average real space parameters (distance, size, density, contact angle) in excellent agreement with the qualitative observation of key scattering features. A decrease of contact angles was observed during the island-to-percolation transition and confirmed by simulations. Furthermore, a surface diffusion coefficient according to the kinetic freezing model and interfacial energy of Au on PS at room temperature were calculated based on a real-time experiment. The morphological characterization is complemented by X-ray reflectivity, optical, and electron microscopy. Our study permits a better understanding of the growth kinetics of gold clusters and their self-organization into complex nanostructures on polymer substrates. It opens up the opportunity to improve nanofabrication and tailoring of metal-polymer nanostructures for optoelectronic applications, organic photovoltaics, and plasmonic-enhanced technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.