Abstract. With the advent of ubiquitous computing, we can easily acquire the locations of moving objects. This paper studies clustering problems for trajectory data that is constrained by the road network. While many trajectory clustering algorithms have been proposed, they do not consider the spatial proximity of objects across the road network. For this kind of data, we propose a new distance measure that reflects the spatial proximity of vehicle trajectories on the road network, and an efficient clustering method that reduces the number of distance computations during the clustering process. Experimental results demonstrate that our proposed method correctly identifies clusters using real-life trajectory data yet reduces the distance computations by up to 80% against the baseline algorithm.
With the advent of ubiquitous computing, a massive amount of trajectory data has been published and shared in many websites. This type of computing also provides motivation for online mining of trajectory data, to fit user-specific preferences or context (e.g., time of the day). While many trajectory clustering algorithms have been proposed, they have typically focused on offline mining and do not consider the restrictions of the underlying road network and selection conditions representing user contexts. In clear contrast, we study an efficient clustering algorithm for Boolean + Clustering queries using a pre-materialized and summarized data structure. Our experimental results demonstrate the efficiency and effectiveness of our proposed method using real-life trajectory data.
As the structural databases continue to expand, efficient methods are required to search similar structures of the query structure from the database. There are many previous works about comparing protein 3D structures and scanning the database with a query structure. However, they generally have limitations on practical use because of large computational and storage requirements. We propose two new types of queries for searching similar sub-structures on the structural database: LSPM (Local Spatial Pattern Matching) and RLSPM (Reverse LSPM). Between two types of queries, we focus on RLSPM problem, because it is more practical and general than LSPM. As a naïve algorithm, we adopt geometric hashing techniques to RL-SPM problem and then propose our proposed algorithm which improves the baseline algorithm to deal with large-scale data and provide an efficient matching algorithm. We employ the sub-sampling and Z-ordering to reduce the storage requirement and execution time, respectively. We conduct our experiments to show the correctness and reliability of the proposed method. Our experiment shows that the true positive rate is at least 0.8 using the reliability measure.
With the advent of ubiquitous computing, we can easily collect large scale trajectory data from moving vehicles. This paper presents TPM (Trajectory Pattern Miner), a software aimed at pattern matching queries for road-network trajectory data, which complements existing efforts focusing on (a) a spatio-temporal window query for location-based service or (b) Euclidean space with no restriction. To overcome limitations of prior research, TPM supports three types of pattern matching queries-whole, subpattern, and reverse subpattern matching for road-network trajectories. We demonstrate application scenarios for each type of pattern matching queries using large-scale real-life trajectory data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.