Deciphering global trends in phylogenetic endemism is crucial for understanding broad-scale evolutionary patterns and the conservation of key elements of biodiversity. However, knowledge to date on global phylogenetic endemism and its determinants has been lacking. Here, we conduct the first global analysis of phylogenetic endemism patterns of land vertebrates (>30,000 species), their environmental correlates, and threats. We found that low temperature seasonality and high topographic heterogeneity were the main global determinants of phylogenetic endemism. While phylogenetic endemism hotspots cover 22% of Earth, these regions currently have a high human footprint, low natural land cover, minimal protection, and will be greatly affected by climate change. Evolutionarily unique, narrow-range species are crucial for sustaining biodiversity in the face of environmental change. Our global study advances the current understanding of this imperilled yet previously overlooked facet of biodiversity.
Conspicuous coloration, which presumably makes prey more visible to predators, has intrigued researchers for long. Contrastingly coloured, conspicuous striped patterns are common among lizards and other animals, but their function is not well known. We propose and test a novel hypothesis, the ‘redirection hypothesis’, wherein longitudinal striped patterns, such as those found on the anterior body parts of most lacertilians, redirect attacks away from themselves during motion towards less vulnerable posterior parts, for example, the autotomous tail. In experiments employing human ‘predators’ attacking virtual prey on a touchscreen, we show that longitudinal striped patterns on the anterior half of prey decreased attacks to the anterior and increased attacks to the posterior. The position of stripes mattered—they worked best when they were at the anterior. By employing an adaptive psychophysical procedure, we show that prey with striped patterning are perceived to move slower, offering a mechanistic explanation for the redirective effect. In summary, our results suggest that the presence of stripes on the body (i.e. head and trunk) of lizards in combination with caudal autotomy can work as an effective anti-predator strategy during motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.