The four Solar Ultraviolet Imagers (SUVI) on board the Geostationary Operational Environmental Satellite (GOES)‐16 and GOES‐17 and the upcoming GOES‐T and GOES‐U weather satellites serve as National Oceanic and Atmospheric Administration's operational solar coronal imagers. These four identically designed solar Extreme UltraViolet instruments are similar in design and capability to the Solar Dynamics Observatory‐Atmospheric Imaging Assembly suite of solar telescopes, and are planned to operationally span two solar cycles or more, from 2017 through 2040. We present the concept of operations for the SUVI instruments, operational requirements, and constraints. The reader is also introduced to the instrument design, testing, and performance characteristics. Finally, the various data products are described along with their potential utility to the operational user or researcher.
The NIRCam instrument on the James Webb Space Telescope will provide coronagraphic imaging from λ=1-5 µm of high contrast sources such as extrasolar planets and circumstellar disks. A Lyot coronagraph with a variety of circular and wedge-shaped occulting masks and matching Lyot pupil stops will be implemented. The occulters approximate grayscale transmission profiles using halftone binary patterns comprising wavelength-sized metal dots on anti-reflection coated sapphire substrates. The mask patterns are being created in the Micro Devices Laboratory at the Jet Propulsion Laboratory using electron beam lithography. Samples of these occulters have been successfully evaluated in a coronagraphic testbed. In a separate process, the complex apertures that form the Lyot stops will be deposited onto optical wedges. The NIRCam coronagraph flight components are expected to be completed this year.
We report on our recent laboratory results with the NASA/Goddard Space Flight Center (GSFC) Visible Nulling Coronagraph (VNC) testbed. We have experimentally achieved focal plane contrasts of 1 x 10 8 and approaching 10 9 at inner working angles of 2 * wavelength/D and 4 * wavelength/D respectively where D is the aperture diameter. The result was obtained using a broadband source with a narrowband spectral filter of width 10 nm centered on 630 nm. To date this is the deepest nulling result with a visible nulling coronagraph yet obtained. Developed also is a Null Control Breadboard (NCB) to assess and quantify MEMS based segmented deformable mirror technology and develop and assess closed-loop null sensing and control algorithm performance from both the pupil and focal planes. We have demonstrated closed-loop control at 27 Hz in the laboratory environment. Efforts are underway to first bring the contrast to > 10 9 necessary for the direct detection and characterization of jovian (Jupiter-like) and then to > 10 10 necessary for terrestrial (Earth-like) exosolar planets. Short term advancements are expected to both broaden the spectral passband from 10 nm to 100 nm and to increase both the long-term stability to > 2 hours and the extent of the null out to a ~ 10 * wavelength / D via the use of MEMS based segmented deformable mirror technology, a coherent fiber bundle, achromatic phase shifters, all in a vacuum chamber at the GSFC VNC facility. Additionally an extreme stability textbook sized compact VNC is under development.
Visible Nulling Coronagraphy (VNC) is the proposed method of detecting and characterizing exo-solar Jovian planets (null depth 10 −9) for the proposed NASA's Extrasolar Planetary Imaging Coronagraph (EPIC) Clampin & Lyon 2004 and is an approach under evaluation for NASA's Terrestrial Planet Finder (TPF) mission. The VNC approach uses a single unobscured filled-aperture telescope and splits, via a 50 : 50 beamsplitter, its re-imaged pupil into two paths within a Mach-Zender interferometer. An achromatic PI phase shift is imposed onto one beam path and the two paths are laterally sheared with respect to each other. The two beams are recombined at a second 50 : 50 beamsplitter. The net effect is that the on axis (stellar) light is transmitted out of the bright interferometer arm while the off-axis (planetary) light is transmitted out of the nulled interferometer arm. The bright output is used for fine pointing control and coarse wavefront control. The nulled output is relayed to the science camera for science imagery and fine wavefront control. The actual transmission pattern, projected on the sky, follows a θ 2 pattern for a single shear, θ 4 for a double shear, with the spacing of the successive maxima proportional to the inverse of the relative lateral shear. Combinations of shears and spacecraft rolls build up the spatial frequency content of the sky transmission pattern in the same manner as imaging interferometer builds up the spatial frequency content of the image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.