Rice requires plenty of water for its cultivation by transplanting. This poses several challenges to its cultivation due to erratic rainfall resulting in drought, flood, and other abiotic stresses of varying intensity. Dry/direct-sown rice (DSR) has emerged as a water-saving/climate-smart alternative to transplanted rice (TPR). The performance of a rice cultivar on growing by different methods of planting under varying environmental conditions varies considerably. However, the molecular basis of the observed phenotypic plasticity of rice to varying environmental conditions is still elusive. Resilience to various environmental fluctuations is important to ensure sustainable rice production in the present era of global climate change. Our observations on exclusively up-regulated genes in leaf of Nagina 22 (N 22) grown by dry/direct-sowing and subjected to drought stress at panicle initiation stage (compared to that in leaf of IR 64), and another set of genes exclusively down-regulated in leaf of N 22 (compared to that in leaf of IR 64) indicate important roles of leaf in stress resilience. A large number of genes down-regulated exclusively in root of N 22 on dry/direct-sowing subjected to drought stress indicates a major contribution of roots in stress tolerance. The genes for redox-homeostasis, transcription factors, stress signaling, carbohydrate metabolism, and epigenetic modifications play important roles in making N 22 better adapted to DSR conditions. More importantly, the involvement of genes in rendering genetic plasticity to N 22 under changing environmental conditions was confirmed by reversal of the method of planting. To the best of our knowledge, this is the first report on decoding the molecular basis of genetic plasticity of rice grown by two different methods of planting subjected to drought stress at the reproductive stage of plant growth. This might help in DSR varietal development program to enhance water-productivity, conserve natural resources, and minimize the emission of greenhouse gases, thus achieving the objectives of negative-emission agriculture.
No abstract
Understanding the molecular and physiological mechanisms of trait diversity is crucial for crop improvement to achieve drought adaptation. Root traits such as high biomass and/or deep rootedness are undoubtedly important drought adaptive traits. The major aim of this investigation was to functionally characterize a set of ethyl methane sulfonate-induced rice mutants for root traits. We report the identification of a high-root biomass mutant through a novel screening strategy for yield and Δ C measurements. The high-root mutant (392-9-1) thus identified, had a 66% higher root biomass compared to wild-type (Nagina-22). Better maintenance of leaf turgor and carbon assimilation rates resulted in lower drought susceptibility index in 392-9-1. Targeted resequencing revealed three non-synonymous single nucleotide variations in 392-9-1 for the genes HOX10, CITRATE SYNTHASE and ZEAXANTHIN EPOXIDASE. Segregation pattern of phenotype and mutant alleles in a single parent backcross F population revealed a typical 3:1 segregation for each of the mutant alleles. The number of F progeny with root biomass equal to or greater than that of 392-9-1 represented approximately one-third of the population indicating a major role played by HOX10 gene in regulating root growth in rice. Allele-specific Sanger sequencing in contrasting F progenies confirmed the co-segregation of HOX10 allele with the root biomass. The non-synonymous mutations in the other two genes did not reveal any specific pattern of co-segregation with root phenotype, indicating a strong role of HOX10, an upstream transcription factor, in regulating root biomass in rice.
Aim: To understand the mechanism of necrosis incited by a host-selective phytotoxin designated as Rhizoctonia solani toxin (RST) identified to be a potential pathogenic factor of R. solani AG1 IA, causing sheath blight (ShB) of rice. Methods and Results:The metabolomic changes induced by the phytotoxic metabolite in a ShB susceptible rice cultivar were elucidated by gas chromatography-mass spectrometry analysis and compared with that of the pathogen to identify rice metabolites targeted by the phytotoxin. The profiles of about 29 metabolites with various physiological roles in rice plants have been identified worldwide. Unsupervised and supervised multivariate chemometrics (principal component analysis and partial least squares-discriminant analysis) and cluster (Heat maps) analyses were used to compare the metabolites obtained from chemical profiles of the treatments with sterile distilled water (SDW) control. The results indicated that the rice plant expressed more metabolites in response to the pathogen than the phytotoxin and was lowest in SDW control. The key metabolites expressed in rice in response to the treatments were investigated by the variable importance in projection (VIP) analysis using p < 0.05 VIP >15. The analysis identified 7 and 11 upregulating metabolites in the phytotoxin and the pathogen treatments, respectively, compared to the untreated control. Among the phytotoxin-treated and the pathogen inoculated samples, the phytotoxin-treated sample recorded upregulation of six metabolites, whereas nine metabolites were upregulated in the pathogen-inoculated samples. These upregulating metabolites are speculated for the necrotic symptoms characteristic to both the phytotoxin and pathogen. In this analysis, hexadecanoic acid and dotriacontane were highly expressed metabolites specific to the phytotoxin and pathogen-treated samples, respectively. Besides upregulation, the metabolites also have a VIP score of >1.5 and hence fulfilled the criteria of classifying them as reliable potential biomarkers. In the pathway analysis, hexadecanoic acid and dotriacontane were identified to be involved in several important biosynthetic pathways of rice, such as the biosynthesis of saturated fatty acid and unsaturated fatty acids cutin, suberin and wax. Conclusions:The study concludes that though certain metabolites induced by the phytotoxin in the susceptible variety during necrosis shares with that of the pathogen, the identification of metabolites specific to the phytotoxin in comparison to the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.