A modified Gradient Descent Bit Flipping (GDBF) algorithm is proposed for
decoding Low Density Parity Check (LDPC) codes on the binary-input additive
white Gaussian noise channel. The new algorithm, called Noisy GDBF (NGDBF),
introduces a random perturbation into each symbol metric at each iteration. The
noise perturbation allows the algorithm to escape from undesirable local
maxima, resulting in improved performance. A combination of heuristic
improvements to the algorithm are proposed and evaluated. When the proposed
heuristics are applied, NGDBF performs better than any previously reported GDBF
variant, and comes within 0.5 dB of the belief propagation algorithm for
several tested codes. Unlike other previous GDBF algorithms that provide an
escape from local maxima, the proposed algorithm uses only local, fully
parallelizable operations and does not require computing a global objective
function or a sort over symbol metrics, making it highly efficient in
comparison. The proposed NGDBF algorithm requires channel state information
which must be obtained from a signal to noise ratio (SNR) estimator.
Architectural details are presented for implementing the NGDBF algorithm.
Complexity analysis and optimizations are also discussed.Comment: 16 pages, 22 figures, 2 table
This Chapter presents a solution for fault-tolerance in Multi-Valued Logic (MVL) circuits comprised of Carbon Nano-Tube Field Effect Transistors (CNTFET). This chapter reviews basic primitives of MVL and describes ternary implementations of CNTFET circuits. Finally, this chapter describes a method for error correction called Restorative Feedback (RFB). The RFB method is a variant of Triple-Modular Redundancy (TMR) that utilizes the fault masking capabilities of the Muller C element to provide added protection against noisy transient faults. Fault tolerant properties of Muller C element is discussed and error correction capability of RFB method is demonstrated in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.