In this paper, an analytical threshold voltage model is proposed for a triple-material cylindrical gate-all-around MOSFET considering parabolic approximation of the potential along the radial axis. The center (axial) and the surface potential models are obtained by solving the 2-D Poisson's equation in the cylindrical coordinate system. This paper refutes the estimation of the natural length using surface potential as in previous work and proposes the use of center-potential-based natural length formulation for an accurate subthreshold analysis. The developed center potential model is used further to formulate the threshold voltage model and also extract drain-induced barrier lowering (DIBL) from the same. The effects of the device parameters like the cylinder diameter, oxide thickness, gate length ratio, etc., on the threshold voltage and DIBL are also studied in this paper. The model is verified by the simulations obtained from 3D numerical device simulator Sentaurus from Synopsys.
Index Terms-Center potential, drain induced barrier lowering (DIBL), hot carrier effect (HCE), short-channel effects (SCEs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.