The dearth of clean textual data often acts as a bottleneck in several natural language processing applications. The data available often lacks proper case (uppercase or lowercase) information. This often comes up when text is obtained from social media, messaging applications and other online platforms. This paper attempts to solve this problem by restoring the correct case of characters, commonly known as Truecasing. Doing so improves the accuracy of several processing tasks further down in the NLP pipeline. Our proposed architecture uses a combination of convolutional neural networks (CNN), bi-directional long short-term memory networks (LSTM) and conditional random fields (CRF), which work at a character level without any explicit feature engineering. In this study we compare our approach to previous statistical and deep learning based approaches. Our method shows an increment of 0.83 in F1 score over the current state of the art. Since truecasing acts as a preprocessing step in several applications, every increment in the F1 score leads to a significant improvement in the language processing tasks.
We propose a method to make mobile screenshots easily searchable. In this paper, we present the work ow in which we: 1) preprocessed a collection of screenshots, 2) identi ed script present in image, 3) extracted unstructured text from images, 4) identi ed language of the extracted text, 5) extracted keywords from the text, 6) identi ed tags based on image features, 7) expanded tag set by identifying related keywords, 8) inserted image tags with relevant images a er ranking and indexed them to make it searchable on device. We made the pipeline which supports multiple languages and executed it on-device, which addressed privacy concerns. We developed novel architectures for components in the pipeline, optimized performance and memory for on-device computation. We observed from experimentation that the solution developed can reduce overall user e ort and improve end user experience while searching, whose results are published.
Cluttering of SMS inbox is one of the serious problems that users today face in the digital world where every online login, transaction, along with promotions generate multiple SMS. This problem not only prevents users from searching and navigating messages efficiently but often results in users missing out the relevant information associated with the corresponding SMS like offer codes, payment reminders etc. In this paper, we propose a unique architecture to organize and extract the appropriate information from SMS and further display it in an intuitive template. In the proposed architecture, we use a Hybrid Hierarchical Long Short Term Memory (LSTM)-Convolutional Neural Network (CNN) to categorize SMS into multiple classes followed by a set of entity parsers used to extract the relevant information from the classified message. The architecture using its preprocessing techniques not only takes into account the enormous variations observed in SMS data but also makes it efficient for its on-device (mobile phone) functionalities in terms of inference timing and size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.