SUMMARY
The PI3K/AKT/mTOR pathway is commonly activated in non-small-cell lung cancer. It plays important roles in promoting oncogenesis in lung cancer and mediating resistance to EGF receptor tyrosine kinase inhibitors. Targeted agents against the components of this pathway are currently in development and their clinical benefits remain to be defined. This review provides an overview of the pathway dysregulation and novel agents targeting the pathway in lung cancer. In addition, potential predictive biomarkers guiding patient selection for targeted PI3K/AKT/mTOR inhibition is also discussed.
IL1RAP is an emerging target for AML therapy. Studying its cell-intrinsic function revealed that IL1RAP interacts with and amplifies signaling through c-KIT and FLT3 in AML cells. This novel promiscuous role of IL1RAP in AML has implications for therapeutic targeting.
Key Points
Targeting of PAK1 inhibits primary AML and MDS patients' cells including leukemia stem cells but spares healthy stem and progenitor cells. Inhibition of PAK1 induces differentiation and apoptosis of AML cells through downregulation of MYC and a core network of MYC target genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.