Purpose: This study aims to evaluate dosimetric parameters like percentage depth dose, dosimetric field size, depth of maximum dose surface dose, penumbra and output factors measured using IBA CC01 pinpoint chamber, IBA stereotactic field diode (SFD), PTW microDiamond against Monte Carlo (MC) simulation for 6 MV flattening filter-free small fields. Materials and Methods: The linear accelerator used in the study was a Varian TrueBeam® STx. All field sizes were defined by jaws. The required shift to effective point of measurement was given for CC01, SFD and microdiamond for depth dose measurements. The output factor of a given field size was taken as the ratio of meter readings normalised to 10 × 10 cm2 reference field size without applying any correction to account for changes in detector response. MC simulation was performed using PRIMO (PENELOPE-based program). The phase space files for MC simulation were adopted from the MyVarian Website. Results and Discussion: Variations were seen between the detectors and MC, especially for fields smaller than 2 × 2 cm2 where the lateral charge particle equilibrium was not satisfied. Diamond detector was seen as most suitable for all measurements above 1 × 1 cm2. SFD was seen very close to MC results except for under-response in output factor measurements. CC01 was observed to be suitable for field sizes above 2 × 2 cm2. Volume averaging effect for penumbra measurements in CC01 was observed. No detector was found suitable for surface dose measurement as surface ionisation was different from surface dose due to the effect of perturbation of fluence. Some discrepancies in measurements and MC values were observed which may suggest effects of source occlusion, shift in focal point or mismatch between real accelerator geometry and simulation geometry. Conclusion: For output factor measurement, TRS483 suggested correction factor needs to be applied to account for the difference in detector response. CC01 can be used for field sizes above 2 × 2 cm2 and microdiamond detector is suitable for above 1 × 1 cm2. Below these field sizes, perturbation corrections and volume averaging corrections need to be applied.
Purpose: The objective of this article is to evaluate the dosimetric efficacy of volumetric modulated arc therapy (VMAT) in comparison to dynamic conformal arc therapy (DCAT) and 3D conformal radiotherapy (3DCRT) for very small volume (≤1 cc) and small volume (≤3 cc) tumours for flattened (FF) and unflattened (FFF) 6 MV beams. Materials and methods: A total of 21 patients who were treated with single-fraction stereotactic radiosurgery, using either VMAT, DCAT or 3DCRT, were included in this study. The volume categorisation was seven patients each in <1, 1–2 and 2–3 cc volume. The treatment was planned with 6 MV FF and FFF beams using three different techniques: VMAT/Rapid Arc (RA) (RA_FF and RA_FFF), dynamic conformal arc therapy (DCA_FF and DCA_FFF) and 3DCRT (Static_FF and Static_FFF). Plans were evaluated for target coverage (V100%), conformity index, homogeneity index, dose gradient for 50% dose fall-off, total MU and MU/dose ratio [intensity-modulated radiotherapy (IMRT) factor], normal brain receiving >12 Gy dose, dose to the organ at risk (OAR), beam ON time and dose received by 12 cc of the brain. Result: The average target coverage for all plans, all tumour volumes (TVs) and delivery techniques is 96·4 ± 4·5 (range 95·7 ± 6·1–97·5 ± 2·9%). The conformity index averaged over all volume ranges <1, 2, 3 cc> varies between 0·55 ± 0·08 and 0·68 ± 0·04 with minimum and maximum being exhibited by DCA_FFF for 1 cc and Static_FFF/RA_FFF for 3 cc tumours, respectively. Mean IMRT factor averaged over all volume ranges for RA_FF, DCA_FF and Static_FF are 3·5 ± 0·8, 2·0 ± 0·2 and 2·0 ± 0·2, respectively; 50% dose fall-off gradient varies in the range of 0·33–0·42, 0·35–0·40 and 0·38–0·45 for 1, 2 and 3 cc tumours, respectively. Conclusion: This study establishes the equivalence between the FF and FFF beam models and different delivery techniques for stereotactic radiosurgery in small TVs in the range of ≤1 to ≤3 cc. Dose conformity, heterogeneity, dose fall-off characteristics and OAR doses show no or very little variation. FFF could offer only limited time advantage due to excess dose rate over an FF beam.
background:The aim was to study the impact of the flattening filter free (FFF) beam on overall treatment time for frameless intracranial radiosurgery using TrueBeam® LINac.The development of frameless stereotactic radiosurgery (srs) is possible due to the incorporation of image guidance in the delivery of treatment. It is important to analyze the cost and benefits of FFF beams for treating srs by understanding the impact of FFF beams in reducing the treatment time.Materials and methods: Dynamic conformal arc (Dca) and volumetric arc therapy (VMaT) plans were generated using 6 MV with a flattening filter (FF) and FFF beams. Overall treatment time was divided into beam on time (BOT) and beam off time (BFT). percentage beam on time reduction (pBOTr) and percentage total time reduction (pTTr) factors were defined for the comparison. results: BOT reduction was observed to be significant for higher dose per fraction but subjected to the treatment technique and modulation differences. pBOTr values are much higher than pTTr values. The 39.9% of pBOTr resulted in only 8% pTTr for Dca and 65.3% resulted in 15.9% pTTr for VMaT. conclusion: Major BFT was utilized for imaging and verification. FFF beam significantly reduced the beam on time and was found to be most effective if the fractional dose was as high as that for srs. Newly defined pBOTr and pTTr factors are very useful indicators to evaluate the efficacy of FFF beams in terms of time reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.