Data from longitudinal analyses can be useful in the design and implementation of control strategies.
Chikungunya fever swept across many South and South-east Asian countries, following extensive outbreaks in the Indian Ocean Islands in 2005. However, molecular epidemiological data to explain the recent spread and evolution of Chikungunya virus (CHIKV) in the Asian region are still limited. This study describes the genetic Characteristics and evolutionary relationships of CHIKV strains that emerged in Sri Lanka and Singapore during 2006-2008. The viruses isolated in Singapore also included those imported from the Maldives (n51), India (n52) and Malaysia (n531). All analysed strains belonged to the East, Central and South African (ECSA) lineage and were evolutionarily more related to Indian than to Indian Ocean Islands strains. Unique genetic characteristics revealed five genetically distinct subpopulations of CHIKV in Sri Lanka and Singapore, which were likely to have emerged through multiple, independent introductions. The evolutionary network based on E1 gene sequences indicated the acquisition of an alanine to valine 226 substitution (E1-A226V) by virus strains of the Indian sublineage as a key evolutionary event that contributed to the transmission and spatial distribution of CHIKV in the region. The E1-A226V substitution was found in 95.7 % (133/139) of analysed isolates in 2008, highlighting the widespread establishment of mutated CHIKV strains in Sri Lanka, Singapore and Malaysia. As the E1-A226V substitution is known to enhance the transmissibility of CHIKV by Aedes albopictus mosquitoes, this observation has important implications for the design of vector control strategies to fight the virus in regions at risk of chikungunya fever.
Schlumberger Faculty for the Future, CRDF Global (31141), the Swedish International Development Cooperation Agency, the County Council of Västerbotten, and the Faculty of Medicine, Umeå University.
Arthropod-borne viruses (arboviruses) may cause severe emerging and re-emerging infectious diseases, which pose a significant threat to human and animal health in the world today. These infectious diseases range from mild febrile illnesses, arthritis, and encephalitis to haemorrhagic fevers. It is postulated that certain environmental factors, vector competence, and host susceptibility have a major impact on the ecology of arboviral diseases. Presently, there is a great interest in the emergence of Alphaviruses because these viruses, including Chikungunya virus, O'nyong'nyong virus, Sindbis virus, Ross River virus, and Mayaro virus, have caused outbreaks in Africa, Asia, Australia, Europe, and America. Some of these viruses are more common in the tropics, whereas others are also found in temperate regions, but the actual factors driving Alphavirus emergence and re-emergence remain unresolved. Furthermore, little is known about the transmission dynamics, pathophysiology, genetic diversity, and evolution of circulating viral strains. In addition, the clinical presentation of Alphaviruses may be similar to other diseases such as dengue, malaria, and typhoid, hence leading to misdiagnosis. However, the typical presence of arthritis may distinguish between Alphaviruses and other differential diagnoses. The absence of validated diagnostic kits for Alphaviruses makes even routine surveillance less feasible. For that purpose, this review describes the occurrence, genetic diversity, clinical characteristics, and the mechanisms involving Alphaviruses causing arthritis in humans. This information may serve as a basis for better awareness and detection of Alphavirus-caused diseases during outbreaks and in establishing appropriate prevention and control measures.
Mosquito-borne infectious diseases are emerging in many regions of the world. Consequently, surveillance of mosquitoes and concomitant infectious agents is of great importance for prediction and prevention of mosquito-borne infectious diseases. Currently, morphological identification of mosquitoes is the traditional procedure. However, sequencing of specified genes or standard genomic regions, DNA barcoding, has recently been suggested as a global standard for identification and classification of many different species. Our aim was to develop a genetic method to identify mosquitoes and to study their relationship. Mosquitoes were captured at collection sites in northern Sweden and identified morphologically before the cytochrome c oxidase subunit I (COI) gene sequences of 14 of the most common mosquito species were determined. The sequences obtained were then used for phylogenetic placement, for validation and benchmarking of phenetic classifications and finally to develop a hierarchical PCR-based typing scheme based on single nucleotide polymorphism sites (SNPs) to enable rapid genetic identification, circumventing the need for morphological characterization. The results showed that exact phylogenetic relationships between mosquito taxa were preserved at shorter evolutionary distances, but at deeper levels, they could not be inferred with confidence using COI gene sequence data alone. Fourteen of the most common mosquito species in Sweden were identified by the SNP/PCR-based typing scheme, demonstrating that genetic typing using SNPs of the COI gene is a useful method for identification of mosquitoes with potential for worldwide application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.