Recently, deep learning is used with convolutional Neural Networks for image classification and figure recognition. In our research, we used Computed Tomography (CT) scans to train a double convolutional Deep Neural Network (CDNN) and a regular CDNN. These topologies were tested against lung cancer images to determine the Tx cancer stage in which these topologies can detect the possibility of lung cancer. The first step was to pre-classify the CT images from the initial dataset so that the training of the CDNN could be focused. Next, we built the double Convolution deep Neural Network with max pooling to perform a more thorough search. Finally, we used CT scans of different Tx cancer stages of lung cancer to determine the Tx stage in which the CDNN would detect possibility of lung cancer. We tested the regular CDNN against our double CDNN. Using this algorithm, doctors will have additional help in early lung cancer detection and early treatment. After extensive training with 100 epochs, we obtained the highest accuracy of 0.9962, whereas the regular CDNN obtained only 0.876 accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.