Magnetic dipole (M1) excitation is the leading mode of multi-nucleon excitations induced by the magnetic field, and is a phenomenon of the spin–orbit splitting and residual interactions involved. In this work, we investigate the effects of the residual interactions on the M1 excitation from a novel perspective, the framework of relativistic nuclear energy-density functional. The relativistic Hartree–Bogoliubov model is utilized to determine the nuclear ground state properties, while the relativistic quasi-particle random-phase approximation is employed for the description of M1-excitation properties. From the analysis of M1 mode in the Ca isotope chain, role of the isovector–pseudovector residual interaction is discussed. For open-shell nuclei, the pairing correlation also plays a noticeable role in the M1 mode. The experimental data on M1 mode is expected to provide a suitable reference to improve and optimize the theoretical models to describe the residual interactions.
Magnetic dipole (M1) excitations build not only a fundamental mode of nucleonic transitions, but they are also relevant for nuclear astrophysics applications. We have established a theory framework for description of M1 transitions based on the relativistic nuclear energy density functional. For this purpose the relativistic quasiparticle random phase approximation (RQRPA) is established using density dependent point coupling interaction DD-PC1, supplemented with the isovectorpseudovector interaction channel in order to study unnatural parity transitions. The introduced framework has been validated using the M1 sum rule for core-plus-two-nucleon systems, and employed in studies of the spin, orbital, isoscalar and isovector M1 transition strengths in magic nuclei 48 Ca and 208 Pb, and open shell nuclei 42 Ca and 50 Ti. In these systems, the isovector spin-flip M1 transition is dominant, mainly between one or two spin-orbit partner states. It is shown that pairing correlations have a significant impact on the centroid energy and major peak position of the M1 mode. The M1 excitations could provide an additional constraint to improve nuclear energy density functionals in the future studies.I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.