Mutation testing assesses test suite efficacy by inserting small faults into programs and measuring the ability of the test suite to detect them. It is widely considered the strongest test criterion in terms of finding the most faults and it subsumes a number of other coverage criteria. Traditional mutation analysis is computationally prohibitive which hinders its adoption as an industry standard. In order to alleviate the computational issues, we present a diff-based probabilistic approach to mutation analysis that drastically reduces the number of mutants by omitting lines of code without statement coverage and lines that are determined to be uninteresting-we dub these arid lines. Furthermore, by reducing the number of mutants and carefully selecting only the most interesting ones we make it easier for humans to understand and evaluate the result of mutation analysis. We propose a heuristic for judging whether a node is arid or not, conditioned on the programming language. We focus on a code-review based approach and consider the effects of surfacing mutation results on developer attention. The described system is used by 6,000 engineers in Google on all code changes they author or review, affecting in total more than 13,000 code authors as part of the mandatory code review process. The system processes about 30% of all diffs across Google that have statement coverage calculated. About 15% of coverage statement calculations fail across Google.
The evaluation and selection of an optimal, efficient and reliable supplier is becoming more and more important for companies in today’s logistics and supply chain management. Decision-making in the supplier selection domain, as an essential component of the supply chain management, is a complex process since a wide range of diverse criteria, stakeholders and possible solutions are embedded into this process. This paper shows a fuzzy approach in multi – criteria decision-making (MCDM) process. Criteria weights have been determined by fuzzy SWARA (Step-wise Weight Assessment Ratio Analysis) method. Chosen methods, fuzzy TOPSIS (Technique for the Order Preference by Similarity to Ideal Solution), fuzzy WASPAS (Weighted Aggregated Sum Product Assessment) and fuzzy ARAS (Additive Ratio Assessment) have been used for evaluation and selection of suppliers in the case of procurement of THK Linear motion guide components by the group of specialists in the “Lagerton” company in Serbia. Finally, results obtained using different MCDM approaches were compared in order to help managers to identify appropriate method for supplier selection problem solving.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.