The natural fiber (NF) reinforced composites, so called eco-composites, are subject of many scientific and research projects, as well as many commercial programs. The growing global environmental and social concern, high rate of depletion of petroleum resources, and new environmental regulations have forced the search for new composites and green materials, compatible with the environment. The aim of this article is to present a brief review of the most suitable and commonly used biodegradable polymer matrices and NF reinforcements in eco-composites, as well as some of the already produced and commercialized NF eco-composites. POLYM. COMPOS., 28:98 -107, 2007.
Biodegradable thermoplastic-based composites reinforced with kenaf fibers were prepared and characterized. Poly(lactic acid) (PLA) was selected as polymeric matrix. To improve PLA/fibers adhesion, low amount of a proper reactive coupling agent, obtained by grafting maleic anhydride onto PLA, was added during matrix/fibers melt mixing. Compared with uncompatibilized composites, this compatibilization strategy induces a strong interfacial adhesion and a pronounced improvement of the mechanical properties.
Biodegradable thermoplastic-based composites reinforced with kenaf fibers were prepared and characterized. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), produced by bacterial fermentation, was selected as polymeric matrix. To improve PHBV/fibers adhesion, low amount of a proper compatibilizing agent, obtained by grafting maleic anhydride onto PHBV, was added during matrix/fibers melt mixing (reactive blending). When compared with uncompatibilized composites, the presence of the compatibilizer induces a stronger interfacial adhesion and a more pronounced improvement of the mechanical properties.
AbstractPoly(lactic acid) (PLA) based composite films with different content of talc (5–15 wt%) were prepared by the solvent casting method. The effect of talc on morphological, structural, thermal, barrier and mechanical properties of neat PLA was investigated. The PLA/talc composites revealed a polymorphic crystalline structure, as demonstrated by X-ray diffraction (XRD) study and differential scanning calorimetry (DSC) analysis. The PLA/talc composites also exhibited significantly improved barrier properties (up to 55% compared to neat PLA), as shown by water vapor permeability (WVP) tests. The puncture measurements showed improved mechanical properties at lower content of talc (up to 5 wt%), and increased brittleness of the PLA/talc composite films at higher talc concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.