This paper examines the impact of various object-to-camera distances and the number of station-points i.e. various shooting directions with regard to the obtained Density-quality of photogrammetrically created Point-clouds-as digital representations of the existent linear architectural/urban objects/elements. According to an artificial (purified) experimental scene used, the conclusion is that with the chosen focal lengths/object-to-camera distances, with shooting directions perpendicular to the axis of that object, with station-points uniformly radially distributed around it (at a circle of 360deg), and with the obtained values of photogrammetric-software process-quality outputs which belong to the recommended ranges, the achieved density-level of the created Point-clouds may be treated as independent on the camera's radial-movement angle but dependent on the percentage of "Object's Photo-Coverage": the lower the Coverage, the lower the density. Also, regardless of the Coverage level, the majority of the generated points are generally more "densimetrically" precise than they are "densimetrically" accurate.
This paper shows the process of inverting the 4th ordered space curve of the first category with a self-intersecting point (with two planes of symmetry) and determining its harmonic equivalent. There are harmonic equivalents for five groups of surfaces obtained through the 4th order space curve of the 1st category. Mapping was done through a system of circular cross-sections. Both classical and relativistic geometry interpretations are presented. We also designed spatial models - a spatial model of the pencil of quadrics and a spatial model of the pencil of equivalent quadrics. Besides the boundary surfaces, one surface of the 3rd order, which is an equivalent to a triaxial ellipsoid, passes through this pencil of surface of the 4th order. The center of inversion is located on the contour of the ellipsoid. The parabolic cylinder is mapped into its equivalent, by mapping the contour parabola of the cylinder, in the frontal projection, in relation to the center and the sphere of inversion into a contour curve of the 4th order surface. The generating lines of the parabolic cylinder, which are in a projecting position and pass through the antipode, are mapped into circles (also in a projecting position) whose diameters are from the center of inversion to the contour line. The application of the 4th order surfaces in architectural practice is also presented. [Projekat Ministarstva nauke Republike Srbije, br. TP-37002: New bioecological materials for protection of soil and water i br. III 44006, The development of new information-communication technologies, using advanced mathematical methods with applications in medicine, energy, e-governance and the protection of national heritage
The quality and stability of erosion-control materials in protection of reservoirs in Southern and Eastern Serbia have been examined both in the field and in accredited laboratories in our country. Field investigations have been carried out over a period of 15 years in Eastern Serbia and for up to 30 years in Southern Serbia, and they are still being conducted by monitoring the state and possible damage of consolidation-retention check dams, walls, and other erosion-control structures. The materials used in protection of the Selova and Grlište Reservoirs are typical construction materials, such as resistant natural stone, concrete of the BI group, i.e., MB 20, aggregate, synthetic elements, etc. Long-term monitoring of their state and minor deformations has shown that the materials were well-chosen and stable, and that there has been no significant damage, except for some minor crumbling and smaller cracks due to negligible scouring. This is all the result of prior thorough empirical and laboratory testing of applied materials, which helped to achieve stability and functionality of structures erected to prevent silting-up of the reservoir. Such a state has contributed to stabilization of erosion processes and reduction of sediment quantities, improvement of water quality, and advancement of the autochthonous vegetation (Salix L., Cornus L., Quercus L.). Vegetation has further mitigated erosion, decreased floods, and consolidated the structures, thereby improving the ecological quality of the catchments as well as the entire study area
The analysis of cruise ships is focusing on port areas where they may represent a significant source of anthropogenic emissions. In order to determine the correlation between cruise ship activities (hoteling and maneuvering) in ports with the ambient concentration of pollutants associated with marine diesel fuel combustion, the low-cost sensors are finding their market share due to lower prices compared to the referent ones. In this study, a network of four low-cost PM sensors was used to determine the correlation between ambient PM2.5 and PM10 mass concentrations with cruise ship activities in the Kotor Bay area during 27 days in the peak summer season, with a 10-min resolution. Recorded data and the Openair model were used to investigate the potential relationship between cruise ship operations and temporal fluctuations in PM concentrations in the ambient air. Additionally, an Tier 3 methodology developed through the European Monitoring and Evaluation Programme of the European Environmental Agency (EMEP/EEA) was applied in order to estimate the total cruise ship PM emissions. The study has shown that weather conditions play a significant role in local PM concentrations, so that, with predominant ENE wind directions, the west side of the Bay experienced on average higher concentrations of both PM2.5 and PM10. Rain precipitation and higher winds tend to decrease rapidly ambient PM concentrations. Higher PM levels are associated mainly with lower wind speeds and the inflows from neighboring berths/anchorages. During the maneuvering (arrival and departure) of cruise ships, higher spikes in PM values were detected, being more visible for PM10 than PM2.5. A significant correlation between daily average PM concentrations and cruise ships’ daily estimated PM emission was not found. As a result, higher temporal resolution demonstrated a stronger correlation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.