HThe rare earth elements (REE) form the largest chemically coherent group in the periodic table. Though generally unfamiliar, the REE are essential for many hundreds of applications. The versatility and specificity of the REE has given them a level of technological, environmental, and economic importance considerably greater than might be expected from their relative obscurity. The United States once was largely self-sufficient in these critical materials, but over the past decade has become dependent upon imports ( fig. 1). In 1999 and 2000, more than 90% of REE required by U.S. industry came from deposits in China.Although the 15 naturally occurring REE (table 1; fig. 2) are generally similar in their geochemical properties, their individual abundances in the Earth are by no means equal. In the continental crust and its REE ore deposits, concentrations of the most and least abundant REE typically differ by two to five orders of magnitude ( fig. 3). As technological applications of REE have multiplied over the past several decades, demand for several of the less abundant (and formerly quite obscure) REE has increased dramatically.The diverse nuclear, metallurgical, chemical, catalytic, electrical, magnetic, and optical properties of the REE have led to an ever increasing variety of applications. These uses range from mundane (lighter flints, glass polishing) to high-tech (phosphors, lasers, magnets, batteries, magnetic refrigeration) to futuristic (hightemperature superconductivity, safe storage and transport of hydrogen for a post-hydrocarbon economy).
Some Applications of the Rare Earth ElementsMany applications of REE are characterized by high specificity and high unit value. For example, color cathode-ray tubes and liquid-crystal displays used in computer monitors and televisions employ europium as the red phosphor; no substitute is known. Owing to relatively low abundance and high demand, Eu is quite valuable-$250 to $1,700/kg (for Eu 2 O 3 ) over the past decade.Fiber-optic telecommunication cables provide much greater bandwidth than the copper wires and cables they have largely replaced. Fiber-optic cables can transmit signals over long distances because they incorporate periodically spaced lengths of erbium-doped fiber that function as laser amplifiers. Er is used in these laser repeaters, despite its high cost (~$700/kg), because it alone possesses the required optical properties.Specificity is not limited to the more exotic REE, such as Eu or Er. Cerium, the most abundant and least expensive REE, has dozens of applications, some highly specific. For example, Ce oxide is uniquely suited as a polishing agent for glass. The rare earth elements (REE) have grown dramatically in diversity and importance over the past four decades. As many of these applications are highly specific, in that substitutes for the REE are inferior or unknown, the REE have acquired a level of technological significance much greater than expected from their relative obscurity. Although actually more abundant than many familiar indu...