This article presents a theory in which automatization is construed as the acquisition of a domain-speciSc knowledge base, formed of separate representations, instances, of each exposure to the task. Processing is considered automatic if it relies on retrieval of stored instances, which will occur only after practice in a consistent environment. Practice is important because it increases the amount retrieved and the speed of retrieval; consistency is important because it ensures that the retrieved instances will be useful. The theory accounts quantitatively for the power-function speed-up and predicts a power-function reduction in the standard deviation that is constrained to have the same exponent as the power function for the speed-up. The theory accounts for qualitative properties as well, explaining how some may disappear and others appear with practice. More generally, it provides an alternative to the modal view of automaticity, arguing that novice performance is limited by a lack of knowledge rather than a scarcity of resources. The focus on learning avoids many problems with the modal view that stem from its focus on resource limitations.Automaticity is an important phenomenon in everyday mental life. Most of us recognize that we perform routine activities quickly and effortlessly, with little thought and conscious awareness-in short, automatically (James, 1890). As a result, we often perform those activities on "automatic pilot" and turn our minds to other things. For example, we can drive to dinner while conversing in depth with a visiting scholar, or we can make coffee while planning dessert. However, these benefits may be offset by costs. The automatic pilot can lead us astray, causing errors and sometimes catastrophes (Reason & Myceilska, 1982). If the conversation is deep enough, we may find ourselves and the scholar arriving at the office rather than the restaurant, or we may discover that we aren't sure whether we put two or three scoops of coffee into the pot.Automaticity is also an important phenomenon in skill acquisition (e.g., Bryan & Hatter, 1899). Skills are thought to consist largely of collections of automatic processes and procedures (e.g., Chase & Simon, 1973;Logan, 1985b). For example, skilled typewriting involves automatic recognition of words, translation of words into keystrokes, and execution of keystrokes (Salthouse. 1986). Moreover, the rate of automatization is thought to place important limits on the rate of skill acquisi-
This article reports four experiments on the ability to inhibit responses in simple and choice reaction time (RT) tasks. Subjects responding to visually presented letters were occasionally presented with a stop signal (a tone) that told them not to respond on that trial. The major dependent variables were (a) the probability of inhibiting a response when the signal occurred, (b) mean and standard deviation (SD) of RT on no-signal trials, (c) mean RT on trials on which the signal occurred but subjects failed to inhibit, and (d) estimated RT to the stop signal. A model was proposed to estimated RT to the stop signal and to account for the relations among the variables. Its main assumption is that the RT process and the stopping process race, and response inhibition depends on which process finishes first. The model allows us to account for differences in response inhibition between tasks in terms of transformations of stop-signal delay that represent the relative finishing times of the RT process and the stopping process. The transformations specified by the model were successful in group data and in data from individual subjects, regardless of how delays were selected. The experiments also compared different methods of selecting stop-signal delays to equate the probability of inhibition in the two tasks.
Response inhibition is a hallmark of executive control. The concept refers to the suppression of nolonger required or inappropriate actions, which supports flexible and goal-directed behavior in everchanging environments. The stop-signal paradigm is most suitable for the study of response inhibition in a laboratory setting. The paradigm has become increasingly popular in cognitive psychology, cognitive neuroscience and psychopathology. We review recent findings in the stop-signal literature with the specific aim of demonstrating how each of these different fields contributes to better understanding of the processes involved in inhibiting a response and monitoring stopping performance, and more generally, discovering how behavior is controlled.People can readily stop talking, walking, typing, etc., in response to changes in internal states or changes in the environment. This ability to inhibit inappropriate or irrelevant responses is a hallmark of executive control. The role of inhibition in many experimental paradigms is debated, but most researchers agree that some kind of inhibition is involved in deliberately stopping a motor response. In this article, we focus on the stop-signal paradigm [1], which has proven to be a useful tool for the study of response inhibition in cognitive psychology, cognitive neuroscience and psychopathology. We review recent developments in the stop-signal paradigm in these different fields. The focus is primarily on the inhibition of manual responses. Studies of oculomotor inhibition are discussed in Box 1. Successful stopping: Inhibition and performance monitoringIn the stop-signal paradigm, subjects perform a go task, such as reporting the identity of a stimulus. Occasionally, the go stimulus is followed by a stop signal, which instructs subjects to withhold the response (see Figure 1). Stopping a response requires a fast control mechanism that prevents the execution of the motor response [1]. This process interacts with slower control mechanisms that monitor and adjust performance [2]. The race between going and stoppingPerformance in the stop-signal paradigm is modeled as a race between a go process, which is triggered by the presentation of the go stimulus, and a stop process, which is triggered by the presentation of the stop signal. When the stop process finishes before the go process, the response is inhibited; when the go processes finishes before the stop process, the response is emitted. The latency of the stop process (stop-signal reaction time; SSRT) is covert and must
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.