Galectin-1 (GAL-1), a member of a family of conserved β-galactoside–binding proteins, has been shown to induce in vitro apoptosis of activated T cells and immature thymocytes. We assessed the therapeutic effects and mechanisms of action of delivery of GAL-1 in a collagen-induced arthritis model. A single injection of syngeneic DBA/1 fibroblasts engineered to secrete GAL-1 at the day of disease onset was able to abrogate clinical and histopathological manifestations of arthritis. This effect was reproduced by daily administration of recombinant GAL-1. GAL-1 treatment resulted in reduction in anticollagen immunoglobulin (Ig)G levels. The cytokine profile in draining lymph node cells and the anticollagen IgG isotypes in mice sera at the end of the treatment clearly showed inhibition of the proinflammatory response and skewing towards a type 2–polarized immune reaction. Lymph node cells from mice engaged in the gene therapy protocol increased their susceptibility to antigen-induced apoptosis. Moreover, GAL-1–expressing fibroblasts and recombinant GAL-1 revealed a specific dose-dependent inhibitory effect in vitro in antigen-dependent interleukin 2 production to an Aq-restricted, collagen type 2–specific T cell hybridoma clone. Thus, a correlation between the apoptotic properties of GAL-1 in vitro and its immunomodulatory properties in vivo supports its therapeutic potential in the treatment of T helper cell type 1–mediated autoimmune disorders.
Viral emergence as a result of zoonotic transmission constitutes a continuous public health threat. Emerging viruses such as SARS coronavirus, hantaviruses and henipaviruses have wildlife reservoirs. Characterising the viruses of candidate reservoir species in geographical hot spots for viral emergence is a sensible approach to develop tools to predict, prevent, or contain emergence events. Here, we explore the viruses of Eidolon helvum, an Old World fruit bat species widely distributed in Africa that lives in close proximity to humans. We identified a great abundance and diversity of novel herpes and papillomaviruses, described the isolation of a novel adenovirus, and detected, for the first time, sequences of a chiropteran poxvirus closely related with Molluscum contagiosum. In sum, E. helvum display a wide variety of mammalian viruses, some of them genetically similar to known human pathogens, highlighting the possibility of zoonotic transmission.
Here we describe a virus discovery protocol for a range of different virus genera, that can be applied to biopsy-sized tissue samples. Our viral enrichment procedure, validated using canine and human liver samples, significantly improves viral read copy number and increases the length of viral contigs that can be generated by de novo assembly. This in turn enables the Illumina next generation sequencing (NGS) platform to be used as an effective tool for viral discovery from tissue samples.
The use of next generation sequencing (NGS) to identify novel viral sequences from eukaryotic tissue samples is challenging. Issues can include the low proportion and copy number of viral reads and the high number of contigs (post-assembly), making subsequent viral analysis difficult. Comparison of assembly algorithms with pre-assembly host-mapping subtraction using a short-read mapping tool, a k-mer frequency based filter and a low complexity filter, has been validated for viral discovery with Illumina data derived from naturally infected liver tissue and simulated data. Assembled contig numbers were significantly reduced (up to 99.97%) by the application of these pre-assembly filtering methods. This approach provides a validated method for maximizing viral contig size as well as reducing the total number of assembled contigs that require down-stream analysis as putative viral nucleic acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.