The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (http://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point‐in‐time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.14748. G protein‐coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid‐2019, and supersedes data presented in the 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC‐IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point‐in‐time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein‐coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid‐2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC‐IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
Interleukin (IL)-4 and IL-13 are key proinflammatory cytokines in asthma. Studies in transgenic mice show that both cytokines cause inflammation, but only IL-13 causes subepithelial fibrosis, a characteristic feature of asthma. We compared the in vitro profibrogenic effects of IL-4 and IL-13 using bronchial fibroblasts from asthmatic subjects. In the presence of transforming growth factor (TGF)-beta the cells transformed into contractile myofibroblasts and expressed alpha-smooth muscle actin and procollagen I. IL-4 and IL-13 also stimulated proliferation, but were relatively ineffective in promoting myofibroblast transformation. TGF-beta was more potent than the cytokines in stimulating release of endothelin-1 and vascular endothelial growth factor, whereas IL-4 and IL-13 were more potent stimuli for eotaxin release. Although neither IL-4 nor IL-13 induced profibrotic responses, both cytokines caused a corticosteroid-insensitive stimulation of TGF-beta2 release from primary bronchial epithelial cells. These data indicate that epithelial activation by IL-13 or IL-4 plays a critical role in initiating remodeling through release of TGF-beta2. TGF-beta2 then activates the underlying myofibroblasts to secrete matrix proteins and smooth muscle and vascular mitogens to propagate remodeling changes into the submucosa. In contrast, direct activation of submucosal fibroblasts by IL-4 and IL-13 has a proinflammatory effect via eotaxin release and recruitment of eosinophils into the airways.
The effects of the nonselective phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine (IBMX) and the selective PDE inhibitors motapizone (type III), rolipram (type IV), zardaverine (type III/IV), and zaprinast (type V and I) on prostaglandin F2 alpha (PFG2 alpha)-induced tone in human pulmonary arteries was investigated. Relaxation was achieved by IBMX [concentration eliciting 50% of maximum response (EC50): 11.3 microM, n = 10], motapizone (EC50:3.0 microM, n = 7), zardaverine (EC50: 3.2 microM, n = 9), and zaprinast (EC50: 31.8 microM, n = 6), whereas rolipram was almost ineffective. The combination of motapizone and zaprinast (10 microM) was the most effective relaxant with supra-additive relaxation and a motapizone EC50 of 575 nM. Biochemical studies revealed the presence of the PDE isozymes I, III, IV and V in the cytosolic and particulate phases of arterial homogenates; PDE II was not detectable. Partial inhibition of adenosine 3',5'-cyclic monophosphate (cAMP)-hydrolyzing PDE activity was achieved with rolipram (26 +/- 2.2%) or motapizone (60 +/- 5.4%), whereas there was almost complete inhibition of total PDE activity with zardaverine (81 +/- 2.0%) or the combination of motapizone and rolipram (82 +/- 2.3%). Inhibition of guanosine 3',5'-cyclic monophosphate (cGMP)-hydrolyzing PDE activity was achieved with zaprinast (62 +/- 2.6%) and motapizone (13 +/- 2.3%), indicating the cGMP-hydrolyzing activity of PDE III. We conclude that four out of the five recognized PDE isozyme families are present in human pulmonary artery. PGF2 alpha-induced tone in this tissue is effectively relaxed through PDE inhibitors with selectivity for type III, III/IV, and type V PDE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.