Dispersal is simply defined as the movement of species across space and time. Despite this terse definition, dispersal is an essential process with direct ecological and evolutionary implications that modulate community assembly and turnover. Seminal ecological studies have shown that environmental context (e.g., local edaphic properties, resident community), dispersal timing and frequency, and species traits, collectively account for patterns of species distribution resulting in either their persistence or unsuccessful establishment within local communities. Despite the key importance of this process, relatively little is known about how dispersal operates in microbiomes across divergent systems and community types. Here, we discuss parallels of macro- and micro-organismal ecology with a focus on idiosyncrasies that may lead to novel mechanisms by which dispersal affects the structure and function of microbiomes. Within the context of ecological implications, we revise the importance of short- and long-distance microbial dispersal through active and passive mechanisms, species traits, and community coalescence, and how these align with recent advances in metacommunity theory. Conversely, we enumerate how microbial dispersal can affect diversification rates of species by promoting gene influxes within local communities and/or shifting genes and allele frequencies via migration or de novo changes (e.g., horizontal gene transfer). Finally, we synthesize how observed microbial assemblages are the dynamic outcome of both successful and unsuccessful dispersal events of taxa and discuss these concepts in line with the literature, thus enabling a richer appreciation of this process in microbiome research.
Diet may be a significant determinant of insect gut microbiome composition. However, the extent to which dietary shifts shape both the composition and relevant functions of insect gut microbiomes, and ultimately impact host energy balance (i.e. metabolic phenotype), is not well understood. We investigated the impacts of diet switching on Diploptera punctata females maintained on a dog food (DF) diet relative to those fed a comparatively sub-optimal cellulose-amended dog food (CADF) diet for 4 weeks. After this period, dietary shift resulted in a significantly higher average mass-specific standard metabolic rate (SMR) in CADF-fed females compared with DF-fed females. We also uncovered significant 13 C-enrichment in DF-fed insect samples relative to CADF-fed insect samples and lowered bacterial essential amino acid (EAA) provisioning in CADF-fed samples. Differences in SMR and EAA provisioning were not accompanied by significant differences in overall microbiome composition between the two groups. However, cellulolytic and nitrogen-fixing bacterial families dominant in wild omnivorous cockroaches and wood-feeding termites were significantly enriched in CADF-fed females than in DF-fed females, at the end of the study. We propose that these changes in microbiome composition after dietary shifts are associated with changes in EAA provisioning and possibly SMR. Further studies are needed to comprehensively understand the relative importance of gut microbial functions among the complexity of factors known to underscore SMR responses in insects under varying dietary conditions.
Different methods are commonly used to assign core microbiome membership, leading to methodological inconsistencies across studies. In this study, we review a set of the most commonly used core microbiome assignment methods and compare their core assignments using both simulated and empirical data.
Plant invasion has proven to be a significant driver of ecosystem change, and with the increased probability of invasion due to globalization, agricultural practices and other anthropogenic causes, it is crucial to understand its impact across multiple trophic levels. With strong linkages between above and belowground processes, the response of soil microorganisms to plant invasion is the next logical step in developing our conceptual understanding of this complex system. In our study, we utilized a meta-analytical approach to better understand the impacts of plant invasion on soil microbial diversity. We synthesized 70 independent studies with 23 unique invaders across multiple ecosystem types to search for generalizable trends in soil microbial α-diversity following invasion. When possible, soil nutrient metrics were also collected in an attempt to understand the contribution of nutrient status shifts on microbial α-diversity. Our results show plant invasion to have highly heterogenous and limited impacts on microbial α-diversity. When taken together, our study indicates soil microbial α-diversity to remain constant following invasion, contrary to the aboveground counterparts. As our results suggest a decoupling in patterns of below and aboveground diversity, future work is needed to examine the drivers of microbial diversity patterns following invasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.