Abstract-This document details the procedures and recommendations of the Goals and Metrics Committee of the StrategicPlanning Task Force of the American Heart Association, which developed the 2020 Impact Goals for the organization.The committee was charged with defining a new concept, cardiovascular health, and determining the metrics needed to monitor it over time. Ideal cardiovascular health, a concept well supported in the literature, is defined by the presence of both ideal health behaviors (nonsmoking, body mass index Ͻ25 kg/m 2 , physical activity at goal levels, and pursuit of a diet consistent with current guideline recommendations) and ideal health factors (untreated total cholesterol Ͻ200 mg/dL, untreated blood pressure Ͻ120/Ͻ80 mm Hg, and fasting blood glucose Ͻ100 mg/dL). Appropriate levels for children are also provided. With the use of levels that span the entire range of the same metrics, cardiovascular health status for the whole population is defined as poor, intermediate, or ideal. These metrics will be monitored to determine the changing prevalence of cardiovascular health status and define achievement of the Impact Goal. In addition, the committee recommends goals for further reductions in cardiovascular disease and stroke mortality. Thus, the committee recommends the following Impact Goals: "By 2020, to improve the cardiovascular health of all Americans by 20% while reducing deaths from cardiovascular diseases and stroke by 20%." These goals will require new strategic directions for the American Heart Association in its research, clinical, public health, and advocacy programs for cardiovascular health promotion and disease prevention in the next decade and beyond. (Circulation. 2010;121:586-613.) Key Words: AHA Special Reports Ⅲ obesity Ⅲ quality of life Ⅲ epidemiology Ⅲ risk factors Ⅲ quality of care
Class III 7. ICD as a standalone therapy is not indicated in an asymptomatic patient with a diagnosis of CPVT. 8. Programmed electrical stimulation is not indicated in CPVT patients.
Background-The extent of the peri-infarct zone by magnetic resonance imaging (MRI) has been related to all-cause mortality in patients with coronary artery disease. This relationship may result from arrhythmogenesis in the infarct border. However, the relationship between tissue heterogeneity in the infarct periphery and arrhythmic substrate has not been investigated. In the present study, we quantify myocardial infarct heterogeneity by contrast-enhanced MRI and relate it to an electrophysiological marker of arrhythmic substrate in patients with left ventricular (LV) systolic dysfunction undergoing prophylactic implantable cardioverter defibrillator placement. Methods and Results-Before implantable cardioverter defibrillator implantation for primary prevention of sudden cardiac death, 47 patients underwent cine and contrast-enhanced MRI to measure LV function, volumes, mass, and infarct size. A method for quantifying the heterogeneous infarct periphery and the denser infarct core is described. MRI indices were related to inducibility of sustained monomorphic ventricular tachycardia during electrophysiological or device testing. For the noninducible versus inducible patients, LV ejection fraction (30Ϯ10% versus 29Ϯ7%, Pϭ0.79), LV end-diastolic volume (220Ϯ70 versus 228Ϯ57 mL, Pϭ0.68), and infarct size by standard contrast-enhanced MRI definitions (PϭNS) were similar. Quantification of tissue heterogeneity at the infarct periphery was strongly associated with inducibility for monomorphic ventricular tachycardia (noninducible versus inducible: 13Ϯ9 versus 19Ϯ8 g, Pϭ0.015) and was the single significant factor in a stepwise logistic regression. Conclusions-Tissue heterogeneity is present and quantifiable within human infarcts. More extensive tissue heterogeneity correlates with increased ventricular irritability by programmed electrical stimulation. These findings support the hypothesis that anatomic tissue heterogeneity increases susceptibility to ventricular arrhythmias in patients with prior myocardial infarction and LV dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.