Abstract. The glomerular filtration barrier separates the blood from the urinary space. Nephrin is a transmembrane protein that belongs to the immunoglobulin superfamily and is localized to the slit diaphragms that are a critical component of this filtration barrier. Mutations in the nephrin gene (NPHS1) lead to congenital Finnish nephropathy, whereas alterations in the level of nephrin expression have been identified in a wide range of acquired glomerular diseases. A 186-bp fragment from the human NPHS1 promoter is capable of directing podocyte-specific expression of a -galactosidase transgene when placed in front of a heterologous minimal promoter in transgenic mice. The Wilms tumor suppressor gene (WT1) is a zinc-finger-containing transcription factor that is coexpressed with NPHS1 in differentiated podocytes; gel shift binding assays demonstrate that a recombinant WT1 protein can bind and activate the 186-bp NPHS1 fragment in a sequence-specific manner. Taken together, these results suggest that WT1 may be required for regulation of the NPHS1 gene in vivo.
In this study, we examined the role of the miRNA miR-770-5p in cisplatin chemotherapy resistance in ovarian cancer (OVC) patients. miR-770-5p expression was reduced in platinum-resistant patients. Using a 6.128-fold in expression as the cutoff value, miR-770-5p expression served as a prognostic biomarker and predicted the response to cisplatin treatment and survival among OVC patients. Overexpression of miR-770-5p in vitro reduced survival in chemoresistant cell lines after cisplatin treatment. ERCC2, a target gene of miR-770-5p that participates in the NER system, was negatively regulated by miR-770-5p. siRNA-mediated silencing of ERCC2 reversed the inhibition of apoptosis resulting from miR-770-5p downreglation in A2780S cells. A comet assay confirmed that this restoration of cisplatin chemosensitivity was due to the inhibition of DNA repair. These findings suggest that endogenous miR-770-5p may function as an anti-oncogene and promote chemosensitivity in OVC, at least in part by downregulating ERCC2. miR-770-5p may therefore be a useful biomarker for predicting chemosensitivity to cisplatin in OVC patients and improve the selection of effective, more personalized, treatment strategies.
MicroRNAs (miRNAs) are involved in regulating the response of cancer cells to various therapeutic interventions, yet their involvement in the chemoresistance of human epithelial ovarian cancer is not fully understood. We found that miR-136 was significantly downregulated in specimens from patients with chemoresistant epithelial ovarian cancer. In the present study, we aimed to clarify the role of miR-136 in regulating the chemoresistance of ovarian cancer. Thirty-four tumor bank specimens and 2 well-established human ovarian cancer cell lines, C13 and OV2008, were used. We found that miR-136 expression was significantly reduced in primary platinum-resistant patients and the ovarian cancer OVC cell line. Enforced expression of miR-136 decreased the chemoresistance to cisplatin in OVC cells through inhibition of cell survival. In addition, we found no association between miR-136 and migration or invasion potential in the ovarian cancer cell lines. However, in the platinum-resistant C13 cell line, the overexpression of miR-136 markedly promoted an apoptotic response to cisplatin. Furthermore, the levels of adducts corrected with their extent of DNA damage/repair, in terms of the percentage of DNA in comet tails, tail length, tail moment (TM), and olive tail moment (OTM), revealed that miR-136 is essential for the repair of cisplatin-induced DNA damage. Our findings suggest that miR-136 may function as an anti-oncogene and deficiency of miR-136 expression in ovarian cancer can induce chemoresistance at least in part by downregulating apoptosis and promoting the repair of cisplatin-induced DNA damage. Thus, miR-136 may provide a biomarker for predicting the chemosensitivity to cisplatin in patients with epithelial ovarian cancer.
One of the best prognostic predictors for patients with epithelial ovarian cancer is the Federation of Obstetrics and Gynecology (FIGO) stage at diagnosis. Advanced-stage ovarian serous carcinoma (OSC) generally have poor prognosis. The goal of this study is to develop and validate a miRNA expression profile that can differentiate the OSC at early and advanced stages and study its correlation with the prognosis of OSC. To identify a unique microRNA (miRNA) pattern associated with the progression of OSC at early and advanced stages, a miRNA microarray was performed using Chinese tumor bank specimens of patients with OSC stage I or III in a retrospective analysis. The expression of four dysregulated miRNAs was validated using quantitative real-time polymerase chain reaction (qRT-PCR) in an external cohort of 51 cases of OSC samples at stages I and III. Kaplan-Meier analysis was performed to analyze the correlation between the expression of some miRNAs and prognosis. Of the 768 miRNAs analyzed in the microarray, 26 miRNAs were significantly either up- or downregulated, with at least a 2-fold difference, in OSC stage I compared with stage III. The qRT-PCR results showed that miR-510, miR-509-5p, and miR-508-3p were significantly downregulated and that miR-483-5p was upregulated in stage III OSC compared with stage I, which was consistent with the microarray results. Kaplan-Meier analysis showed low miR-510 expression, low miR-509-5p expression, and advanced FIGO stage, and chemotherapy resistance were significantly associated with poorer overall survival (P < 0.05). Our results suggest that miRNAs may play a role in the progression of OSC, and miR-510 and miR-509-5p may be considered novel-candidate clinical biomarkers for predicting OSC outcome.
Improved insight into the molecular and genetic profile of different types of epithelial ovarian cancer (EOC) is required for understanding the carcinogenesis of EOC and may potentially be exploited by future targeted therapies. The aim of the present study was to identify a unique microRNA (miRNA) patterns and key miRNAs, which may assist in predicting progression and prognosis in high-grade serous carcinoma (HGSC) and clear cell carcinoma (CCC). To identify unique miRNA patterns associated with HGSC and CCC, a miRNA microarray was performed using Chinese tumor bank specimens of patients with HGSC or CCC in a retrospective analysis. The expression levels of four deregulated miRNAs were further validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in an external cohort of 42 cases of HGSC and 36 cases of CCC. Kaplan-Meier analysis was performed to analyze the correlation between the expression levels of the four miRNAs and patient prognosis. Among these validated miRNAs, miR-510 was further examined in another cohort of normal ovarian tissues, as well as the HGSC, low-grade serous carcinoma (LGSC) and CCC specimens using RT-qPCR and in situ hybridization. The results revealed that, of the 768 miRNAs analyzed in the microarray, 33 and 50 miRNAs were significantly upregulated and downregulated, respectively, with at least a 2-fold difference in HGSC, compared with CCC. The quantitative analysis demonstrated that miR-510 and miR-129-3p were significantly downregulated, and that miR-483-5p and miR-miR-449a were significantly upregulated in CCC, compared with HGSC (P<0.05), which was consistent with the microarray results. Kaplan-Meier analysis revealed low expression levels of miR-510 and low expression levels of miR-129-3p, advanced International Federation of Gynecology and Obstetrics (FIGO) stage, lymphatic metastasis and that HGSC was significantly associated with the poorer overall survival rates (P<0.05). The expression of miR-510 was significantly higher in the LGSC and CCC tissues, compared with the HGSC and normal ovarian tissues. The results of the present study suggested that different subtypes of EOC have specific miRNA signatures, and that miR-510 may be involved differently in HGSC and CCC. Thus, miR-510 and miR-129-3p may be considered as potential novel candidate clinical biomarkers for predicting the outcome of EOC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.