We estimate parameters from the Katz and Thompson permeability model using laboratory complex electrical conductivity (CC) and nuclear magnetic resonance (NMR) data to build permeability models parameterized with geophysical measurements. We use the Katz and Thompson model based on the characteristic hydraulic length scale, determined from mercury injection capillary pressure estimates of pore throat size, and the intrinsic formation factor, determined from multisalinity conductivity measurements, for this purpose. Two new permeability models are tested, one based on CC data and another that incorporates CC and NMR data. From measurements made on forty‐five sandstone cores collected from fifteen different formations, we evaluate how well the CC relaxation time and the NMR transverse relaxation times compare to the characteristic hydraulic length scale and how well the formation factor estimated from CC parameters compares to the intrinsic formation factor. We find: (1) the NMR transverse relaxation time models the characteristic hydraulic length scale more accurately than the CC relaxation time ( normalR2 of 0.69 and 0.33 and normalized root mean square errors (NRMSE) of 0.16 and 0.21, respectively); (2) the CC estimated formation factor is well correlated with the intrinsic formation factor (NRMSE=0.23). We demonstrate that that permeability estimates from the joint‐NMR‐CC model (NRMSE=0.13) compare favorably to estimates from the Katz and Thompson model (NRMSE=0.074). This model advances the capability of the Katz and Thompson model by employing parameters measureable in the field giving it the potential to more accurately estimate permeability using geophysical measurements than are currently possible.
The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.
Abstract. In water-stressed regions of the world, managed aquifer recharge (MAR), the process of intentionally recharging depleted aquifers, is an essential tool for combating groundwater depletion. Many groundwater-dependent regions, including the Central Valley in California, USA, are underlain by thick unsaturated zones (ca. 10 to 40 m thick), nested within complex valley-fill deposits that can hinder or facilitate recharge. Within the saturated zone, interconnected deposits of coarse-grained material (sands and gravel) can act as preferential recharge pathways, while fine-textured facies (silts and clays) accommodate the majority of the long-term increase in aquifer storage. However, this relationship is more complex within the vadose zone. Coarse facies can act as capillary barriers that restrict flow, and contrasts in matric potential can draw water from coarse-grained flow paths into fine-grained, low-permeability zones. To determine the impact of unsaturated-zone stratigraphic heterogeneity on MAR effectiveness, we simulate recharge at a Central Valley almond orchard surveyed with a towed transient electromagnetic system. First, we identified three outcomes of interest for MAR sites: infiltration rate at the surface, residence time of water in the root zone and saturated-zone recharge efficiency, which is defined as the increase in saturated-zone storage induced by MAR. Next, we developed a geostatistical approach for parameterizing a 3D variably saturated groundwater flow model using geophysical data. We use the resulting workflow to evaluate the three outcomes of interest and perform Monte Carlo simulations to quantify their uncertainty as a function of model input parameters and spatial uncertainty. Model results show that coarse-grained facies accommodate rapid infiltration rates and that contiguous blocks of fine-grained sediments within the root zone are >20 % likely to remain saturated longer than almond trees can tolerate. Simulations also reveal that capillary-driven flow draws recharge water into unsaturated, fine-grained sediments, limiting saturated-zone recharge efficiency. Two years after inundation, fine-grained facies within the vadose zone retain an average of 37 % of recharge water across all simulations, where it is inaccessible to either plants or pumping wells. Global sensitivity analyses demonstrate that each outcome of interest is most sensitive to parameters that describe the fine facies, implying that future work to reduce MAR uncertainty should focus on characterizing fine-grained sediments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.