Puccinia psidii has long been considered a significant threat to Australian plant industries and ecosystems. In April 2010, P. psidii was detected for the first time in Australia on the central coast of New South Wales (NSW). The fungus spread rapidly along the east coast and in December 2010 was found in Queensland (Qld) followed by Victoria a year later. Puccinia psidii was initially restricted to the southeastern part of Qld but spread as far north as Mossman. In Qld, 48 species of Myrtaceae are considered highly or extremely susceptible to the disease. The impact of P. psidii on individual trees and shrubs has ranged from minor leaf spots, foliage, stem and branch dieback to reduced fecundity. Tree death, as a result of repeated infection, has been recorded for Rhodomyrtus psidioides. Rust infection has also been recorded on flower buds, flowers and fruits of 28 host species. Morphological and molecular characteristics were used to confirm the identification of P. psidii from a range of Myrtaceae in Qld and compared with isolates from NSW and overseas. A reconstructed phylogeny based on the LSU and SSU regions of rDNA did not resolve the familial placement of P. psidii, but indicated that it does not belong to the Pucciniaceae. Uredo rangelii was found to be con-specific with all isolates of P. psidii in morphology, ITS and LSU sequence data, and host range.
Bioassay-guided fractionation of the aqueous extract of the leaves of Alstonia actinophylla with use of a coupled enzyme assay, CPU/hippuricase, to detect carboxypeptidase U inhibitors led to the isolation of a novel indole alkaloid, actinophyllic acid (1). The structure of 1 was determined from detailed 2D NMR studies. Actinophyllic acid was found to be a potent inhibitor of the coupled enzyme assay with an IC(50) of 0.84 microM. Actinophyllic acid possesses a unique 2,3,6,7,9,13c-hexahydro-1H-1,7,8-(methanetriyloxymethano)pyrrolo[1',2':1,2]azocino[4,3-b]indole-8(5H)-carboxylic acid skeleton.
Australian rainforests have been fragmented due to past climatic changes and more recently landscape change as a result of clearing for agriculture and urban spread. The subtropical rainforests of South Eastern Queensland are significantly more fragmented than the tropical World Heritage listed northern rainforests and are subject to much greater human population pressures. The Australian rainforest flora is relatively taxonomically rich at the family level, but less so at the species level. Current methods to assess biodiversity based on species numbers fail to adequately capture this richness at higher taxonomic levels. We developed a DNA barcode library for the SE Queensland rainforest flora to support a methodology for biodiversity assessment that incorporates both taxonomic diversity and phylogenetic relationships. We placed our SE Queensland phylogeny based on a three marker DNA barcode within a larger international rainforest barcode library and used this to calculate phylogenetic diversity (PD). We compared phylo- diversity measures, species composition and richness and ecosystem diversity of the SE Queensland rainforest estate to identify which bio subregions contain the greatest rainforest biodiversity, subregion relationships and their level of protection. We identified areas of highest conservation priority. Diversity was not correlated with rainforest area in SE Queensland subregions but PD was correlated with both the percent of the subregion occupied by rainforest and the diversity of regional ecosystems (RE) present. The patterns of species diversity and phylogenetic diversity suggest a strong influence of historical biogeography. Some subregions contain significantly more PD than expected by chance, consistent with the concept of refugia, while others were significantly phylogenetically clustered, consistent with recent range expansions.
Two novel indolizidine alkaloids, grandisine A (1) and B (2), and the known alkaloid (-) isoelaeocarpiline (3) were isolated from the leaves of Elaeocarpus grandis and their structures determined by 1D and 2D NMR spectroscopy. The compounds showed affinity for the human delta-opioid receptor. Grandisine A contains a unique tetracyclic skeleton, while grandisine B possesses the unique combination of isoquinuclidinone and indolizidine groups in one molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.