Abstract:We demonstrate a novel imaging fiber bundle ("hexabundle") that is suitable for low-light applications in astronomy. The most successful survey instruments at optical-infrared wavelengths use hundreds to thousands of multimode fibers fed to one or more spectrographs. Since most celestial sources are spatially extended on the celestial sphere, a hexabundle provides spectroscopic information at many distinct locations across the source. We discuss two varieties of hexabundles: (i) lightly fused, closely packed, circular cores; (ii) heavily fused non-circular cores with higher fill fractions. In both cases, we find the important result that the cladding can be reduced to ~2μm over the short fuse length, well below the conventional ~10λ thickness employed more generally, with a consequent gain in fill factor. Over the coming decade, it is to be expected that fiber-based instruments will be upgraded with hexabundles in order to increase the spatial multiplex capability by two or more orders of magnitude.
We present the first integrated multimode photonic spectrograph, a device we call PIMMS #1. The device comprises a set of multimode fibres that convert to single-mode propagation using a matching set of photonic lanterns. These feed to a stack of cyclic array waveguides (AWGs) that illuminate a common detector. Such a device greatly reduces the size of an astronomical instrument at a fixed spectroscopic resolution. Remarkably, the PIMMS concept is largely independent of the telescope diameter, input focal ratio and entrance aperture -i.e. one size fits all! The instrument architecture can also exploit recent advances in astrophotonics (e.g. OH suppression fibres). We present a movie of the instrument's operation and discuss the advantages and disadvantages of this approach.
Photonic technologies have received growing consideration for incorporation into next-generation astronomical instrumentation, owing to their miniature footprint and inherent robustness. In this paper we present results from the first on-telescope demonstration of a miniature photonic spectrograph for astronomy, by obtaining spectra spanning the entire H-band from several stellar targets. The prototype was tested on the 3.9 m Anglo-Australian telescope. In particular, we present a spectrum of the variable star π 1 Gru, with observed CO molecular absorption bands, at a resolving power R = 2500 at 1600 nm. Furthermore, we successfully demonstrate the simultaneous acquisition of multiple spectra with a single spectrograph chip by using multiple fibre inputs.
The widely held constructivist view of learning advocates student engagement via interactivity. Within the physics education research community, several specific interactive strategies have been developed to enhance conceptual understanding. One such strategy, the Interactive Lecture Demonstration (ILD) is designed for large lecture classes and, if measured using specific conceptual surveys, is purported to provide learning gains of up to 80%. This paper reports on learning gains for two different Projects over ten years. In Project 1, the ILDs were implemented from 1999 to 2001 with students who had successfully completed senior high school physics. The learning gains for students not exposed to the ILDs were in the range 13% to 16% while those for students exposed to the ILDs was 31% to 50%. In Project 2, the ILDs were implemented from 2007 to 2009 with students who had not studied senior high school physics. Since the use of ILDs in Project 1 had produced positive results, ethical considerations dictated that all students be exposed to ILDs. The learning gains were from 28% to 42%. On the one hand it is pleasing to note that there is an increase in learning gains, yet on the other, we note that the gains are nowhere near the claimed 80%. This paper also reports on teacher experiences of using the ILDs, in Project 2
Interest in pupil-remapping interferometry, in which a single telescope pupil is fragmented and recombined using fiber optic technologies, has been growing among a number of groups. As a logical extrapolation from several highly successful aperture masking programs underway worldwide, pupil remapping offers the advantage of spatial filtering (with single-mode fibers) and in principle can avoid the penalty of low throughput inherent to an aperture mask. However in practice, pupil remapping presents a number of difficult technological challenges including injection into the fibers, pathlength matching of the device, and stability and reproducibility of the results. Here we present new approaches based on recently-available photonic technologies in which coherent threedimensional waveguide structures can be sculpted into bulk substrate. These advances allow us to miniaturize the photonic processing into a single, robust, thermally stable element; ideal for demanding observatory or spacecraft environments. Ultimately, a wide range of optical functionality could be routinely fabricated into such structures, including beam combiners and dispersive or wavelength selective elements, bringing us closer to the vision of an interferometer on a chip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.