The reaction of bis(benzene)vanadium with tetracyanoethylene, TCNE, affords an insoluble amorphous black solid that exhibits field-dependent magnetization and hysteresis at room temperature. The critical temperature could not be estimated as it exceeds 350 kelvin, the thermal decomposition temperature of the sample. The empirical composition of the reported material is V(TCNE)x.Y(CH(2)Cl(2)) with x approximately 2 and Y approximately 1/2. On the basis of the available magnetic and infrared data, threedimensional antiferromagnetic exchange of the donor and acceptor spins resulting in ferrimagnetic behavior appears to be the mode of magnetic coupling.
Novel heterogenized asymmetric catalysts were synthesized by immobilizing preformed Ru catalysts on magnetite nanoparticles via the phosphonate functionality and were characterized by a variety of techniques, including TEM, magnetization, and XRD. These nanoparticle-supported chiral catalysts were used for enantioselective heterogeneous asymmetric hydrogenation of aromatic ketones with very high enantiomeric excess values of up to 98.0%. The immobilized catalysts were easily recycled by magnetic decantation and reused for up to 14 times without loss of activity and enantioselectivity. Orthogonal nature of the present catalyst immobilization approach should allow the design of other superparamagnetic nanoparticle-supported asymmetric catalysts for a wide range of organic transformations.
The synthesis and structural and magnetic characterization of an S = 6 cyanide-bridged octanuclear FeIII4NiII4 (1) complex is described. Ac susceptibility and mu-SQUID measurements suggest that fast magnetization relaxation is present in zero-field due to quantum tunneling of the ground spin state (QTM) while application of small magnetic fields induces slow relaxation of the magnetization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.