Focal-adhesion kinase (FAK) is an important mediator of growth-factor signalling, cell proliferation, cell survival and cell migration. Given that the development of malignancy is often associated with perturbations in these processes, it is not surprising that FAK activity is altered in cancer cells. Mouse models have shown that FAK is involved in tumour formation and progression, and other studies showing that FAK expression is increased in human tumours make FAK a potentially important new therapeutic target.
Although Src expression and activity are often elevated in colon cancer, the precise consequences of overexpression of the non-catalytic Src homology (SH) domains, or enhanced catalytic activity, are unknown. We show that, in KM12C colon cancer cells, elevated Src activity causes the components of adherens junctions, including vinculin, to be redistributed to Src-induced integrin adhesion complexes. Specifically, elevated Src activity blocks proper assembly of cell cell contacts after cells are switched from media containing a low level of calcium to media containing a high level of calcium, and E-cadherin remains internalized. In contrast, although elevated expression of the non-catalytic domains of Src is sufficient to induce assembly of integrin adhesion complexes, it does not induce disorganization of E-cadherin-associated intercellular contacts. Surprisingly, Src-induced disruption of E-cadherin localization requires specific integrin signalling, because E-cadherin redistribution is blocked by loss of cell-matrix interaction, or by inhibitory antibodies to alpha(v) or beta(1) integrin subunits. Furthermore, phosphorylation of the integrin-regulated focal adhesion kinase (FAK) on Src-specific sites is required for Src-induced de-regulation of E-cadherin, demonstrating interdependence between integrin-induced signals and cadherin-associated adhesion changes induced by Src.
Networks of actin filaments, controlled by the Arp2/3 complex, drive membrane protrusion during cell migration. How integrins signal to the Arp2/3 complex is not well understood. Here, we show that focal adhesion kinase (FAK) and the Arp2/3 complex associate and colocalize at transient structures formed early after adhesion. Nascent lamellipodia, which originate at these structures, do not form in FAK-deficient cells, or in cells in which FAK mutants cannot be autophosphorylated after integrin engagement. The FERM domain of FAK binds directly to Arp3 and can enhance Arp2/3-dependent actin polymerization. Critically, Arp2/3 is not bound when FAK is phosphorylated on Tyr 397. Interfering peptides and FERM-domain point mutants show that FAK binding to Arp2/3 controls protrusive lamellipodia formation and cell spreading. This establishes a new function for the FAK FERM domain in forming a phosphorylation-regulated complex with Arp2/3, linking integrin signalling directly with the actin polymerization machinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.