Groundwater with elevated dissolved-solids concentrations-containing large concentrations of chloride, sodium, sulfate, and calcium-is present in the Mud Lake area of Eastern Idaho. The source of these solutes is unknown; however, an understanding of the geochemical sources and processes controlling their presence in groundwater in the Mud Lake area is needed to better understand the geochemical sources and processes controlling the water quality of groundwater at the Idaho National Laboratory. The geochemical sources and processes controlling the water quality of groundwater in the Mud Lake area were determined by investigating the geology, hydrology, land use, and groundwater geochemistry in the Mud Lake area, proposing sources for solutes, and testing the proposed sources through geochemical modeling with PHREEQC. Modeling indicated that sources of water to the eastern Snake River Plain aquifer were groundwater from the Beaverhead Mountains and the Camas Creek drainage basin; surface water from Medicine Lodge and Camas Creeks, Mud Lake, and irrigation water; and upward flow of geothermal water from beneath the aquifer. Mixing of groundwater with surface water or other groundwater occurred throughout the aquifer. Carbonate reactions, silicate weathering, and dissolution of evaporite minerals and fertilizer explain most of the changes in chemistry in the aquifer. Redox reactions, cation exchange, and evaporation were locally important. The source of large concentrations of chloride, sodium, sulfate, and calcium was evaporite deposits in the unsaturated zone associated with Pleistocene Lake Terreton. Large amounts of chloride, sodium, sulfate, and calcium are added to groundwater from irrigation water infiltrating through lake bed sediments containing evaporite deposits and the resultant dissolution of gypsum, halite, sylvite, and bischofite.
Nuclear research activities at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) produced liquid and solid chemical and radiochemical wastes that were disposed to the subsurface resulting in detectable concentrations of some waste constituents in the eastern Snake River Plain (ESRP) aquifer. These waste constituents may affect the water quality of the aquifer and may pose risks to the eventual users of the aquifer water. To understand these risks to water quality the U.S. Geological Survey, in cooperation with the DOE, conducted geochemical mass-balance modeling of the ESRP aquifer to improve the understanding of chemical reactions, sources of recharge, mixing of water, and groundwater flow directions in the shallow (upper 250 feet) aquifer at the INL. Modeling was conducted using the water chemistry of 127 water samples collected from sites at and near the INL. Water samples were collected between 1952 and 2017 with most of the samples collected during the mid-1990s. Geochemistry and isotopic data used in geochemical modeling consisted of dissolved oxygen, carbon dioxide, major ions, silica, aluminum, iron, and the stable isotope ratios of hydrogen, oxygen, and carbon. Geochemical modeling results indicated that the primary chemical reactions in the aquifer were precipitation of calcite and dissolution of plagioclase (An 60) and basalt volcanic glass. Secondary minerals other than calcite included calcium montmorillonite and goethite. Reverse cation exchange, consisting of sodium exchanging for calcium on clay minerals, occurred near site facilities where large amounts of sodium were released to the ESRP aquifer in wastewater discharge. Reverse cation exchange acted to retard the movement of wastewater-derived sodium in the aquifer. Regional groundwater inflow was the primary source of recharge to the aquifer underlying the Northeast and Southeast INL Areas. Birch Creek (BC), the Big Lost River (BLR), and groundwater from BC valley provided recharge to the North INL Area, and the BLR and groundwater from BC and Little contaminated groundwater flowed southeast and then southwest from the Naval Reactors Facility industrial waste ditch, with the percentage of wastewater in groundwater decreasing from about 100 percent wastewater adjacent to the waste ditch to about 2 percent wastewater about 0.6 mi south of the waste ditch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.