Abstract— The discovery of 154 meteorite fragments within an 11 km2 area of wind‐excavated basins in Roosevelt County, New Mexico, permits a new calculation of the accumulation rate of meteorite falls at the Earth's surface.
Thermoluminescence dating of the coversand unit comprising the prime recovery surface suggests the maximum terrestrial age of the meteorites to be about 16.0 ka. The 68 meteorite fragments subjected to petrological analyses represent a minimum of 49 individual falls. Collection bias has largely excluded carbonaceous chondrites and achondrites, requiring the accumulation rate derived from the recovered samples to be increased by a factor of 1.25. Terrestrial weathering destroying ordinary chondrites can be modelled as a first‐order decay process with an estimated half‐life of 3.5 ± 1.9 ka on the semiarid American High Plains. Having accounted for the age of the recovery surface, area of field searches, pairing of finds, collection bias and weathering half‐life, we calculate an accumulation rate of 9.4 × 102 falls/a per 106 km2 for falls > 10 g total mass. This figure exceeds the best‐constrained previous estimate by more than an order of magnitude. One possible reason for this disparity may be the extraordinary length of the fall record preserved in the surficial geology of Roosevelt County. The high accumulation rate determined for the past 16 ka may point to the existence of periods when the meteorite fall rate was significantly greater than at present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.