In this paper, we classify scientific articles in the domain of natural language processing (NLP) and machine learning (ML), as core subfields of artificial intelligence (AI), into whether (i) they extend the current state-of-the-art by the introduction of novel techniques which beat existing models or whether (ii) they mainly criticize the existing state-of-the-art, i.e. that it is deficient with respect to some property (e.g. wrong evaluation, wrong datasets, misleading task specification). We refer to contributions under (i) as having a ‘positive stance’ and contributions under (ii) as having a ‘negative stance’ (to related work). We annotate over 1.5 k papers from NLP and ML to train a SciBERT-based model to automatically predict the stance of a paper based on its title and abstract. We then analyse large-scale trends on over 41 k papers from the last approximately 35 years in NLP and ML, finding that papers have become substantially more positive over time, but negative papers also got more negative and we observe considerably more negative papers in recent years. Negative papers are also more influential in terms of citations they receive.
In this paper, we classify scientific articles in the domain of natural language processing (NLP) and machine learning (ML) into whether (i) they extend the current state-ofthe-art by introduction of novel techniques which beat existing models or whether (ii) they mainly criticize the existing state-ofthe-art, i.e., that it is deficient with respect to some property (e.g., wrong evaluation, wrong datasets, misleading task specification). We refer to contributions under (i) as having a "positive stance" and contributions under (ii) as having a "negative stance" to related work. We annotate over 2k papers from NLP and ML to train a SciBERT based model to automatically predict the stance of a paper based on its title and abstract. We then analyze large-scale trends on over 41k papers from the last ∼35 years in NLP and ML, finding that papers have gotten substantially more positive over time, but negative papers also got more negative and we observe considerably more negative papers in recent years. Negative papers are also more influential in terms of citations they receive.1 This concept is related to positive/negative citations within a paper, which has been annotated in a few works, e.g., Teufel et al. (2006). Our work goes beyond individual citations and assesses the stance of the authors' main message.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.