Exhaust gases have many effects on human beings and the environment. Therefore, they must be kept under control. The International Convention for the Prevention of Pollution from Ships (MARPOL), which is concerned with the prevention of marine pollution, limits the emissions according to the regulations. In Emission Control Area (ECA) regions, which are determined by MARPOL as ECAs, the emission rates should be controlled. Direct injection (DI) diesel engines are commonly used as a propulsion system on ships. The prediction and control of diesel engine emission rates is not an easy task in real time. Therefore, in this study, an artificial neural network (ANN) structure using the back propagation (BP) learning algorithm and radial basis function (RBF) has been developed to predict the emissions and exhaust temperature for DI diesel engines with emulsified fuel. In order to show the ANN performance, the network outputs and experimental results of the BP and RBF have been compared in this paper. The experimental results were obtained from a real diesel engine. The results showed that the emissions and exhaust temperature were estimated with a very high accuracy by means of the designed neural network structures and the RBF is more reliable than the BP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.