Novel aromatic mono‐ and diphosphonate monomers based on t‐butyl α‐bromomethacrylate were prepared for use in dental composites. The synthesis of the two monomers involved three steps: the reaction of diethyl phosphite with phenol or hydroquinone, the rearrangement of the resulting phosphate derivatives into o‐hydroxyaryl phosphonates with lithium diisopropylamide, and the reaction of o‐hydroxyaryl phosphonates with t‐butyl α‐bromomethacrylate. Then, the selective hydrolysis of the t‐butyl ester groups of the monomers with trifluoroacetic acid gave the other carboxylic acid containing monomers. The photopolymerization behaviors of the synthesized monomers with glycerol dimethacrylate and triethylene glycol dimethacrylate were investigated with photodifferential scanning calorimetry at 40 °C with 2,2′‐dimethoxy‐2‐phenyl acetophenone as the photoinitiator. The hydrolysis of the t‐butyl groups of the monomers increased the reactivity and the rates of polymerization of the monomers. The mixtures of the acid monomers showed rates of polymerizations similar to those of homopolymerizations of triethylene glycol dimethacrylate and glycerol dimethacrylate. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6775–6781, 2006
Novel aromatic mono-and di(phosphonate) or phosphonic acid monomers for use in dental composites were synthesized. Synthesis of monomer 1a involved three steps: (i) reaction of t-butyl a-bromomethacrylate (tBuBMA) and Bisphenol A, (ii) conversion to diacid chloride derivative using thionyl chloride, (iii) reaction of diacid chloride with diethyl (2-hydroxyphenyl) phosphonate. Monomer 2a was synthesized from the reaction of 2-chloromethacryloyl chloride and diethyl (2-hydroxyphenyl) phosphonate. Synthesis of monomer 3a involved reaction of glycidyl methacrylate (GMA) with diethyl (2-hydroxyphenyl) phosphonate. Hydrolysis of the phosphonate groups of monomers 1a and 2a with trimethylsilyl bromide (TMSBr) gave monomers 1b and 2b with phosphonic acid functionality, which is intended to improve binding ability of dental composites. The homopolymerization and copolymerization behaviors of the synthesized monomers with (Bis-GMA) were investigated using photodifferential scanning calorimetry at 40 C with 2,2 0 -dimethoxy-2-phenyl acetophenone as photoinitiator. The interaction of the monomer 1b with hydroxyapatite (HAP) was investigated using Fourier transform infrared technique.
Novel dental monomers containing both phosphonic and carboxylic acid functional groups were prepared. The monomers were based on t‐butyl α‐bromomethacrylate (t‐BuBMA) and synthesized in three steps: The reaction of o‐hydroxyaryl phosphonates [diethyl (2‐hydroxyphenyl) phosphonate, tetraethyl (2,5‐dihydroxy‐1,4‐phenylene) diphosphonate and tetraethyl 5,5′‐(propane‐2,2‐diyl)bis(2‐hydroxy‐5,1‐ phenylene) diphosphonate] with t‐BuBMA, the hydrolysis of phosphonate groups to phosphonic acid using trimethyl silylbromide, and the hydrolysis of the t‐butyl groups to carboxylic acid with trifluoroacetic acid. The monomers were solids and soluble in water and ethanol. The structures of the monomers were determined by Fourier transform infrared (FTIR), 1H, 13C, and 31P nuclear magnetic resonance (NMR) spectroscopy. The copolymerization behaviors of the synthesized monomers with glycerol dimethacrylate were first investigated in bulk using photodifferential scanning calorimetry at 40 °C with 2,2′‐dimethoxy‐2‐phenyl acetophenone as photoinitiator. Then, the solution copolymerization of the monomers with acrylamide in ethanol and water was studied, indicating that the synthesized monomers are incorporated into the copolymers. The acidic nature of the aqueous solutions of these monomers (pH values 1.72–1.87) is expected to give them etching properties important for dental applications. The interaction of the monomers with hydroxyapatite was investigated using 13C NMR and FTIR techniques. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1953–1965, 2009
Five novel phosphonated mono‐ and dimethacrylate monomers have been synthesized by two different routes. Monomers 1 and 2 were synthesized by reactions of methacryloyl chloride with diethyl (2‐hydroxyphenyl) phosphonate or tetraethyl (2,5‐dihydroxy‐1,4‐phenylene) bisphosphonate; monomers 3 and 4 by reactions of α‐(chloromethyl)acryloyl chloride (CMAC) first with dimethyl (2‐hydroxyethyl) phosphonate and then with benzoic or formic acids. The reaction of CMAC with two moles of dimethyl (2‐hydroxyethyl) phosphonate gave monomer 5. Thermal homopolymerization of monomers 1, 3, 4, and 5 and copolymerization of monomer 1 with methyl methacrylate (MMA) were investigated using azobisisobutyronitrile (AIBN) at 60 °C. Glass transition temperatures were observed for poly‐1, poly(MMA‐co‐1) (50:50), poly(MMA‐co‐1) (90:10), PMMA, poly‐3, and poly‐5 at 52, 90, 99, 129, 50, and 70 °C, respectively. TGA analysis of these polymers indicated formation of char on combustion. Homo‐ and/or copolymerization behavior of the synthesized monomers with 2,2‐bis[4‐(2‐hydroxy‐3‐methacryloyloxy propyloxy) phenyl] propane (Bis‐GMA) were investigated with photodifferential scanning calorimetry. The maximum rate of polymerizations decreased in the following order: Bis‐GMA∼3 > 1 > 4 > 5. The conversions of monomers 1, 3, 4, and 5 (73.9, 85.9, 98.2, and 62.2%) were very high compared with Bis‐GMA (40.5%). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5737–5746, 2009
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.