Wire arc additive manufacturing is a metal additive manufacturing technique that allows the fabrication of large size components at a high deposition rate. During wire arc additive manufacturing, multi-layer deposition results in heat accumulation, which raises the preheat temperature of the previously built layer. This causes process instabilities, resulting in deviations from the desired dimensions and variations in material properties. In the present study, a systematic investigation is carried out by varying the interlayer delay from 20 to 80 s during wire arc additive manufacturing deposition of the wall structure. The effect of the interlayer delay on the density, geometry, microstructure and mechanical properties is investigated. An improvement in density, reduction in wall width and wall height and grain refinement are observed with an increase in the interlayer delay. The grain refinement results in an improvement in the micro-hardness and compression strength of the wall structure. In order to understand the effect of interlayer delay on the temperature distribution, numerical simulation is carried out and it is observed that the preheat temperature reduced with an increase in interlayer delay resulting in variation in geometry, microstructure and mechanical properties. The study paves the direction for tailoring the properties of wire arc additive manufacturing-built wall structures by controlling the interlayer delay period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.